|        |          | 1    |
|--------|----------|------|
| «      | >>       | 1    |
| «      |          | »15  |
| «      |          | »39  |
| «      | >>       | 66   |
| «      | >>       | 89   |
| «      | >>       | 109  |
| «      | (        | 123  |
| «      | <b>»</b> | 138  |
| «      |          | »143 |
| «      | <b>»</b> | 148  |
|        |          |      |
| «      | <b>»</b> | 155  |
| «      | <b>»</b> | 180  |
| «      |          | »196 |
| «      |          | »204 |
| «      |          | »217 |
| «      |          | »228 |
| «      |          | »240 |
|        |          |      |
| «      | (1)》     | 253  |
| «      | (2)》     | 272  |
| «      | >>       | 291  |
| «      | >>       | 309  |
|        |          |      |
| «      |          | »331 |
| «      | <b>»</b> | 346  |
| «      | >>       | 361  |
| «      | >>       | 379  |
| «      | >>       | 386  |
| «      | >>       | 401  |
| «      | >>       | 416  |
| «      | <b>»</b> | 421  |
| «      | (1)》     | 429  |
| «      | (2)》     | 442  |
| «      | (2) »    | 480  |
| «      | »        | 500  |
| «      |          | »    |
| "<br>《 | >>       | 539  |

|   | 566  |
|---|------|
|   | 587  |
|   | 599  |
|   | 610  |
|   | 610  |
|   | 625  |
|   | 647  |
|   | 660  |
|   | 667  |
|   | 681  |
|   | 698  |
|   | 703  |
|   | 709  |
|   | 717  |
|   | 722  |
|   | 731  |
|   | 739  |
|   | 754  |
|   | 754  |
|   | 769  |
|   | 784  |
|   | 800  |
|   | 818  |
|   | 833  |
|   | 842  |
|   | 858  |
|   | 0.65 |
|   |      |
|   | 897  |
|   |      |
|   |      |
|   | 944  |
| » |      |
| " |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   |      |
|   | 1020 |

Ethics and Law is a compulsory course of ideological and political theory course in colleges and universities. It's a course that helps college students scientific understand life, strengthens moral cultivation and establishes the proper rule of law. As the main channel of moral education and the main position of ideological and political education, Ethics and Law is a course that systematically educates college students about Marxist theory, moral and legal education.

[ ]

0

K 1, , ,

,

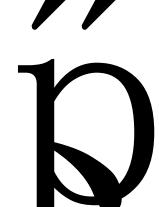
2,

•

3,

0

ľ


|                          |   |      |    |   |     | 1  | 2  | 3  |
|--------------------------|---|------|----|---|-----|----|----|----|
| 1.2                      |   |      |    |   | `   | ** | ** | ** |
| ,                        |   | *    | ** |   | **: | *  |    |    |
| ľ                        |   | ,    | (  | 1 | )   |    |    |    |
| <b>L</b>                 |   | ]    |    |   | `   | ,  | `  |    |
| 【<br>1、                  |   | 1    | 2, |   | 3、  |    | 0  |    |
| ľ                        | ` | 1    | `  | ` | `   |    |    |    |
| ľ                        | / | 1    |    |   |     | 0  |    |    |
|                          |   |      | o  |   | 1   | )  |    |    |
| ľ                        |   | 1    |    |   |     |    |    |    |
| 【<br>1 <sub>5</sub><br>【 |   | ] 2, | •  |   | 0   |    |    |    |
| ľ                        | / | 1    | 0  | 3 |     |    |    |    |
|                          |   |      |    | 1 |     |    |    |    |

( 1 ) 1 ] 2, 1, 1 , ( 1 ) ] ] 2、 1, 【 ` , **(** / ( 1 ) 1 1 1, 【 2, ] **T** 1 ( 1 ) 1 1

2, 1, 3, [ ] ] ( 2 ) 1 **1**, ] 2, 3, 1 [ ] [ ( ( 2 )) ] 1, 1 2, 3, 1 1 ( 1 ) ] 1 2, 3, 1、 4、 ` ]

**[** / 1 (5 1 4 ) 1 K 【 1、 4、 【 1 2, 3, 1 1 ( 2 1 K 【 1、 3、 【 1 2, K 4, 1 ( 1 ) ] **1**, 1 2, 3,

```
1
   •
                  ]
                       (
                           1
                1
   K
   1
   1,
                                                     2,
3,
   。4、
【
                ]
   0.5
                       (
                                     )
                1
   .
2,
1
   1,
[
                                3,
   0.5
                      (1
                                    0.5
                ]
   1,
              1
                        2,
                                              3,
            •
```



( 2 ) ] 1 1, 2, 3, 1 **[** / 1 ( 1 ) 1 [ 1 2, 1, 3, 1 ] ( 1 ) ] ) 2, 1, [ 3, 1 1 ) ( 1 1

```
2、
1,
【
                         3,
        1
1 )
              (
         1
1
1,
              2,
                            3,
]
           1
[
                  (
                       2
                          )
]
1
1,
                    2,
                                  3,
1
           1
( /
                      (
                            2
                               )
]
1
1,
                       2,
     3、
[
          •
[
```

( 2 ) ] **) 1**, 2, 3, [ ] [ ( 2 ) 1 ] . 2, 1, [ 3, [ 1 1 1 ( 1 ) 【 1、 2, 3, • 1 ] [ 2 ) 1

> 1 1, 1, 3, 2, ] [ > > ( 2 【 }, ] 2, 3, 4, 5**、** [ 1 ) 1 > 1 2, 3, 。 】 1 2 3  $\sqrt{}$ . 1

|      | ı         | I         |           | I |  |
|------|-----------|-----------|-----------|---|--|
| . 2  | √         |           |           |   |  |
| . 3  | √         |           |           |   |  |
| . 4  | √         |           |           |   |  |
| 1.1  | √         |           |           |   |  |
| 1.2  | √         |           |           |   |  |
| 1.3  | √         |           |           |   |  |
| 2. 1 | $\sqrt{}$ |           |           |   |  |
| 2.2  | V         |           |           |   |  |
| 2.3  | √         |           |           |   |  |
| 3.1  | √         |           |           |   |  |
| 3.2  | √         |           |           |   |  |
| 3.3  | √         |           |           |   |  |
| 4. 1 |           | √         |           |   |  |
| 4. 2 |           | √         |           |   |  |
| 4.3  |           | $\sqrt{}$ |           |   |  |
| 4.4  |           | √         |           |   |  |
| 5. 1 |           | √         |           |   |  |
| 5. 2 |           | $\sqrt{}$ |           |   |  |
| 5.3  |           | √         |           |   |  |
| 5. 4 |           | √         |           |   |  |
| 6. 1 |           |           | $\sqrt{}$ |   |  |
| 6.2  |           |           | $\sqrt{}$ |   |  |
| 6.3  |           |           | V         |   |  |
| 6.4  |           |           | V         |   |  |
| 7. 1 |           |           | V         |   |  |
| 7.2  |           |           | V         |   |  |

| 7. 3 |  | V         |  |
|------|--|-----------|--|
| 8. 1 |  | $\sqrt{}$ |  |
| 8.2  |  | $\sqrt{}$ |  |
| 8.3  |  | $\sqrt{}$ |  |

`

|          | <b>«</b> |          |    |    | <b>»</b> |   |     |
|----------|----------|----------|----|----|----------|---|-----|
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
| `        |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          | _√       |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          | _√       |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          | '  |    |          |   |     |
|          |          |          |    |    |          |   |     |
|          |          |          |    |    |          |   |     |
| `        |          |          |    |    |          |   |     |
| <b>《</b> |          |          | >> | K  |          |   |     |
| **       |          |          | // | 11 |          |   | 。 《 |
|          |          | <b>»</b> |    | K  |          | ` | ۷ ر |
| K        |          | .,       |    |    |          | - |     |
| **       |          |          |    |    |          |   |     |

An outline of fundamental principles of marxismteaches focus on teaching the marxist world outlook and methodology, it helps students to master marxism as a whole and to know right the basic laws of development of human society. this course teaching provides students with a solid foundation of philosophical theory, which can help students to acquire a correct world outlook, life outlook and values, which can help them to learn to observe and analyze problems with marxist world view and methodology, which can helps them to establish the ideal belief in building chinese characteristic socialism, and to persist in basic lines of chinese communist party.

8.1

7.1

1, 2, 1 2 3 " 1, 2, ( ) 3, " 4, 1 ( ) (1) (2) 1 2 ( 。)

18

K

" " ( ), 1 2 3 1, ( ) 2, 1 2 3 4 (5) 6 « **»** 0 ( ) 1, K 2, K 3, ( ) 1, 2, 3, 4, 5, 6 1

K

K

1

1 1, 2, 3, 4, 5, 6, ľ 1 / K K K ( ( ( )

K K 6

[ ]

 $\mathbf{K}$   $\mathbf{K}$   $\mathbf{S}$ 

K K

[ ] , 1,

2,

1, . .

° 2, ° °

3, .

4, ,

( ) 1, 2, ) 3, 4, 5, 6, 7, 2+5 10000 8, 9, 10, " 《 〈  $\rangle$ **»** 1 ( ) \* \* 8 1

° ,

**«** 

[ / ] .

1, (1) (2) (3)

2,

(1) « **»** (2) 3, 4, (1) (2) (3) (4) 5, 6,

24

7,

(1) (2) (3) 8, (1) (2) (3) " ( )

1995 697 .

8 [ ]

2000

( ) 1,

2, 3,

4.5.6.

7**、**( )

1, 2, 3, 4, ) ( 5, 6, **,** ( ) 1, 2, 3, ( ) 1, 2, 3, 4, 5, > > > 6, 6 1 1

1 1, 2, 3, 4, 5, 6, 7, 8, **(** / 1 (\* ) ( ), 1, 0 2, 3, \*

( ), 1, " 2, (1) (2) ( ), 1, 2, " ( ), 1, 2, \* 3 1

29

1

· · æ

) ( ) 。 ( ) 1, 2, 1, 2, , ) 3, 4, 5, )

32

6,

|   | /   |          | 1        |   |      |   |          |   |
|---|-----|----------|----------|---|------|---|----------|---|
| ( | *   |          | )        |   |      |   |          | ` |
| « |     | »、       |          | « | 》、   | « | <b>»</b> | ` |
|   |     |          |          |   |      |   |          |   |
|   |     |          |          |   |      |   |          |   |
|   |     |          |          |   |      |   |          |   |
|   |     |          |          |   |      |   |          |   |
|   |     |          |          |   |      |   |          | 0 |
|   | `   | o        |          |   |      |   | (        | ) |
|   |     | (        |          |   | ) —— | - |          |   |
| ( | )   | (        | )        |   |      |   |          |   |
| ( | ) K |          |          | K |      |   |          |   |
|   | ! ( | !        | )        |   | !    |   |          |   |
| ( |     | `        |          |   |      |   |          |   |
|   |     |          |          | ( |      |   | )        |   |
|   | `   |          |          |   | o    |   | (        | ) |
|   |     | _        |          | ( | ) 。  |   |          |   |
|   |     |          |          |   |      |   |          |   |
|   | ——  | <b>«</b> |          |   |      |   |          |   |
|   | o   | «        | <b>》</b> |   |      | - |          |   |
|   | `   |          |          |   |      |   |          |   |

( ) ( ) ( ) ( ) ( ) **※** ( ) ( ) ( ) ( ), ( ) 1893 11 5 ( ) ( ) **※** ( )

( )( )

, ( )

( )

( )

| 1 | 2 |  |  |
|---|---|--|--|
| X |   |  |  |
|   | X |  |  |
|   | X |  |  |
|   | X |  |  |
|   | X |  |  |
|   | X |  |  |
|   | X |  |  |
|   | X |  |  |

[ ] (; , ) [ ] 30%

70%

【 】

《 »

```
5%
K
                                                               25%
                                                               10%
                                                               10%
                                                               25%
                                                               10%
                                                               10%
                                                               5%
                                                 «
                                 »
              «
           »
                           (
                                                            2015
          )
                          (4
            1
            2
                              ( ) (3
                                        35)
K
                                    (30 )
            3
            4
                     (8 37)
                       ( ) (4 37)
            5
                      (3
            6
                         )
                      (90
            7
                           )
        1,
        2,
        3,
        4,
                      )
```

```
\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) 
 1, 《
2, 《
 3, 《
                                                                                                                                                                                                                                                                                                                                                                                                          )
                                                                                                                                                                                                                                     》(11 )
 4, 《
                                                                                                                                                                                                                                     》(3  )
 5, 《24
  , «
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              》(10
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               )
 1, 《
                                                                                                                                           》 ---
 2,
 3,
 4,
 5,
 1,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             (28
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           )
                                                                                                                                                                                                                                                                                                                                                    (30)
 2,
                                                                                                                                                                                                                                                                                                                                                  (30 )
(4 )
(1 )
(2 )
(12 )
(30 )
 3,
                                                                               2
 4,
 5,
 6,
 7、
 8,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   (5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         )
                                                                                                                                                                                                                                                                                                                                                                                                                    (1
 9,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 )
                                                                                                                                                                                                         (
                                                                                                                                                                                                                                                                                         30
                                                                                                                                                                                                                                                                                                                                                               )
                                                                                                                                         \langle\!\langle
           (
                                                                                                                                                                                                                                                                                                                                                                                                                                         \rangle\!\!\rangle
                                                                                                                                                                                                                      。)
 1,
                                                                                                          \langle\!\langle
                                                                                                                                                                                                                                                  >>
```

K

2,

 $\langle\!\langle$ 

37

**»** 

|   | 3,   | «          | <b>»</b> |          |          |          |
|---|------|------------|----------|----------|----------|----------|
|   | 4,   | «          |          | >>       |          |          |
|   | 5,   | «          | <b>»</b> |          |          |          |
|   | 6,   | «          | «        | <b>»</b> | ( )      | <b>»</b> |
|   | 7、   | «          |          | <b>»</b> |          |          |
|   | 8,   | «          |          |          | >>       |          |
|   | 9,   | <b>«</b> " | "        |          | >>       |          |
|   | •    | 1          |          |          |          |          |
| K | 1,   | `          | . «      |          | >>       |          |
|   | 2007 | 0          |          |          |          |          |
|   | 2,   | . «        |          |          | <b>»</b> | 2011     |
|   | 0    |            |          |          |          |          |
|   | 3,   | «          |          |          | >>       | 2010     |
|   | 0    |            |          |          |          |          |

|   | <b>«</b> | -    |   |    | <b>»</b> |      |   |   |  |
|---|----------|------|---|----|----------|------|---|---|--|
| , |          | 2017 | 6 | 25 |          | 2017 | 7 | 1 |  |

| Outline of Modern Chinese History |            |  |   |  |    |   |    |   |  |  |
|-----------------------------------|------------|--|---|--|----|---|----|---|--|--|
| 0281                              | 0281000510 |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
| √□                                |            |  | [ |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  | [  |   |    |   |  |  |
| $  \sqrt{\Box}$                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  | 32 | ( | 32 | ) |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |
|                                   |            |  |   |  |    |   |    |   |  |  |

. « »

The major of public political theory course— "Outline of the history of modern China" — opening in our school full—time arts is a compulsory curse of national higher school Chinese modern basic

theory problem of education, meanwhile an ideological and political theory course strengthening the ideological and political education of college students, helping students building up their ideals and faith so as to establish a correct outlook upon the world, life and value view, which reflects the essential characteristics of socialism higher education.

[ ]

•

2,

3,

4, ] 1 3 8.1 \*\*\* \*\*\* (1840-1919) (1 ) (0.3 K 1 1 1. 2. 3. ]

41

K

1.

]

2. (0.5 ) 1 1 1. 2. 3. 1 ] (0.2 1 1 1. 2. ] ] (2 ) (0.5 0.5 ) ] 1 1. 2.

42

3.

4.

1 [ **(** / ] (3 ) (1 1/4 ) 3/4 1 0 1 J [ 1

2. 1 ] / (3) (1 ) ] ] 1, 2, 3, 4, ] 1 1, 2, 3, 20 (1 ) ] 1 1, 2, 1 ] 1,

K

2, (1 ) 1 1 1, 2, 3, ] ] K 1, 2, (1919–1949) (1 ) 1 1 1, 2, 3, ] 1919-1949 

K 1, 2, > 3, (3 ) (1 1 ) 1 ] 1. 2. 3. 4. ] / 1 1. 2. 3 4. 1 (1 ) 1

1 ľ 1. 2. 3. 1 / ] 1. 2. 3. (1 1 ) 1 0 1 1. 2. 1 / 1 1. 2. 3. (2 )

(1 - È , B. 1 n )



\* dCdC}@#TOUpiQxCC@#OD ...

**(** /

« 》、 « **»** [ ] / 1. 2. 3. (0.5) ) 1 ] 1, 2, 1 / 1 1, 2, (0.5 ) 1 ] 1,

```
2,
3,
4,
]
1
1.
2.
                            (0.5
                                    )
1
1
1.
2.
ľ
              1
]
                                    (1
                                          )
              1
1
1.
2.
3.
4.
```

1 • 1 (0.5 ) 1 1 1. > 2. 3. 1 ] (0.5 ) 1 ] 1. 2. 3. ]

1 (0.5 ) ] > ] 1. 2. « **»** 3. 1 ] (1949-2015) (1 ) ] ] 1. 2.

3. ] **(** / ] (2) (0.5 0.5 1 ] 1. 2. 1

0

1

[

0.5 (0.5 ) 1 1 1. 2. ] 0 1 1. 2. 3. (1 1 ) ]

[ ]
1.
2.
3.

r 1

•

] (3) ( 1 ) ] **»** « **»** 1 1. 2. ( « » . « ] ) **»** « 》、 1 > 、 ( 1 ] 

1 1. " 2. " 3. 1 ) ] ( 1 ] 20 1 1. 2. 3. 4. ] ( )

: **(** / > (4 ) (1 0.8 0.2 ) 1 ] 1. 2. 3. > 1 ] (0.4 ) 1 ] 1. 2. 3.

1

```
1
1
/
                            (0.6
          K
                                  )
          1
"
1
1.
2.
3.
      K
1
1
                               (0.5
                                     )
1
]
1.
2.
3.
1
1
```

(1 0.8 0.2 1 1 1. 2. 3. 1 1 (0.5) 1 1 1. 2.

3.
[ ] .
[ / ]

.

1 2 X X X X X 1. 1 X X X X 1.2 X X 1.3 X X

| 2. 1  | X | X |   | X |  |
|-------|---|---|---|---|--|
| 2. 2  | X | X |   | X |  |
| 2.3   | X | X |   | X |  |
| 3. 1  | X | X |   | X |  |
| 3. 2  | X | X |   | X |  |
| 3.3   | X | X |   | X |  |
|       | X | X |   | X |  |
| 4. 1  | X | X |   | X |  |
| 4. 2  | X | X |   | X |  |
| 4. 3  | X | X |   | X |  |
| 5. 1  | X | X |   | X |  |
| 5. 2  | X | X |   | X |  |
| 6. 1  | X | X |   | X |  |
| 6. 2  | X | X |   | X |  |
| 6. 3  | X | X |   | X |  |
| 6. 4  | X | X |   | X |  |
| 6. 5  | X | X |   | X |  |
| 7. 1  | X | X |   | X |  |
| 7. 2  | X | X |   | X |  |
| 7. 3  | X | X |   | X |  |
| 7. 4  | X | X |   | X |  |
|       | X |   | X | X |  |
| 8. 1  | X |   | X | X |  |
| 8. 2  | X |   | X | X |  |
| 8.3   | X |   | X | X |  |
| 9. 1  | X |   | X | X |  |
| 9. 2  | X |   | X | X |  |
| 9.3   | X |   | X | X |  |
| 10. 1 | X |   | X | X |  |
| •     |   |   |   |   |  |

| 10. 2 | X | X | X |  |
|-------|---|---|---|--|
| 10. 3 | X | X | X |  |
| 10.4  | X | X | X |  |
| 10.5  | X | X | X |  |
| 10.6  | X | X | X |  |

`

**[** ] 30% 20%, 10%

70%。

.

0

· —

•

0

•

°

K .

•

•

" " 2. >

•

•

•

0

u n

u n

*"* 

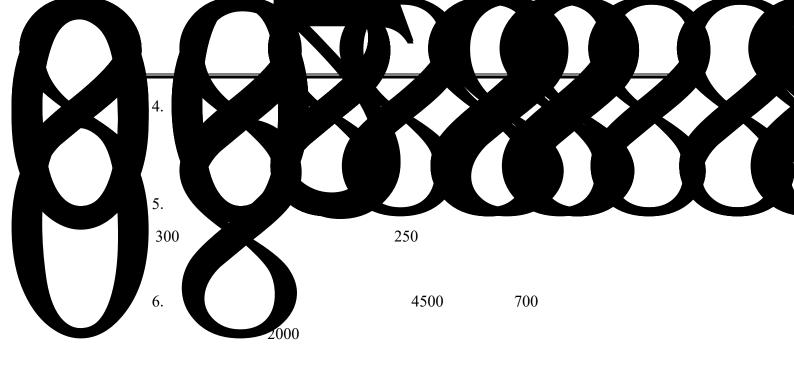
\_\_\_\_

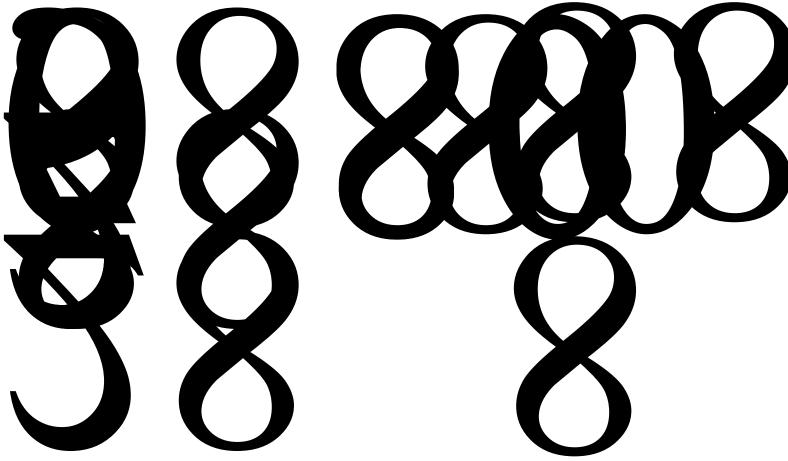
**«** 

2019 8 2019 8

`

|       |       | (1);  |      |         | (2) |          |     |
|-------|-------|-------|------|---------|-----|----------|-----|
|       |       | (3)   |      |         | (4) | )        |     |
| С     | Е     | (B    | L    | )       |     |          |     |
| 03110 | 0010; | 03110 | 020; | 0311003 | 30; | 03110040 |     |
|       |       |       |      |         |     |          |     |
|       |       |       |      |         |     |          |     |
|       |       |       |      |         |     |          |     |
|       |       |       |      |         |     |          |     |
|       |       |       |      |         |     | _        |     |
|       | 8     |       |      |         |     |          | 128 |
|       |       |       |      |         |     |          |     |
|       |       |       |      |         |     |          |     |
|       |       |       | ://  |         | •   | . /      |     |


K .


ō

\_\_\_\_\_

C E (B L \_ ) . I . T C E (B L ) . I , C E \_ . T (B L . M \_ ] « **»** 1 1. 130 2.

3. 70 100





```
P- II R
              (1) P 	 A(2) P 	 B
        Ε
P III W
         P
              : G
                   W
                          P
                               W
P- IV C -
         S
         -
-[
P
              ; R
T
                                 W
                                     R
            ; T
_
          ] -
            :
1. F -
         \mathbf{E}
         E ; M
                           E ; T
     ; T -
E
2-R
S
3. W
L
4. T
                   L
₩
F
    - - ]
P- I L - T
P- II R
              (1) P 	 A(2) P 	 B
      Ē
P III W P
              : G
                   W P
                               W
P- IV C -
         S
[ - - -]
P
T
                       ; T
```

```
1. F
           ^{-}E
S -
                          ; M
    ; T
2. R
I
3. W
A -
                      L
4. T
L-
F
P^- I L ^- T
                 (1) P A (2) P B
P- II R
           E
P III W
          P
                 : G
                       W
                               P \qquad \quad W
P- IV C - S
-[
  - }-
P
_
              1
T
                            ; T
1
1. F
            E
S
                      ; M
T -
                                              ; T
2. R
          :
```

- - - -

```
R- -
3. W
В -
4. T
                     L
L-
F
P- I L
         - T
             (1) P 	 A(2) P
P- II R
          Ē
                              В
         P -: G- W - P
P- III W -
          S (-
P IV C
                         1
P
             ; T-
             ]
-
T
                 ; T
                                             T
] -
1. F
           Е
S -
                 ; M
T
2. R
I
3. W
W
4. T
                     L
₩
F
      - - ]
P- I L
        - T
P II R
         \mathbf{E}
                (1) P 	 A(2) P 	 B
                : G W
                             P W
P III W
          P
P IV C
          S
```

\_ \_ \_

F ;

3. W - : - - -

W

[ - - ] - - - - -

P<sup>-</sup> I L <sup>-</sup> T P] II R E (1) P A (2) P B

P III W P : G

## ÝEP (DFOA 1. F S 2. R M ? 3. W W 4. T L W :: W F P- I L - T Ē P- II R (1) P A (2) P B P III W P : G W **[2698]** D W W P- IV C -S ]

P

DER P ;;  $\Box$ 

- - -

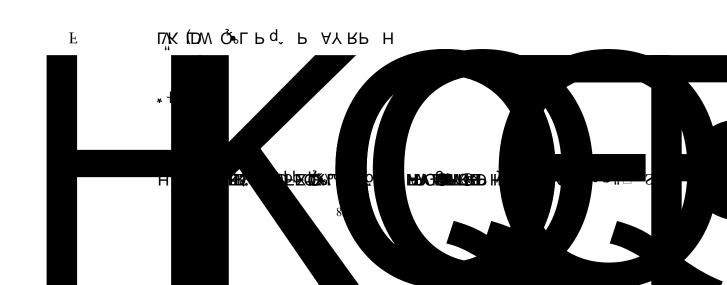
```
M
3. W
W
4. T
                        L
W
₩
F
P- I L
          - T
P II R
            Ε
                  (1) P
                         A (2) P
                                    В
                         W
P III W
            P
                                 P
                  : G
                                        \mathbf{W}
P- IV C -
           S
1
P
                                     ; T
₩
T
                                               ; T
                       ; W
1. F
              E
S
                                ; M
~; T
                                L
                                                   ; T
                T
2- R
S
3. W
```

```
W
4. T
                    L
A-
F
         1
       - T
P I L
P II R
          Ε
              (1) P 	 A(2) P 	 B
P III W P
              : G
                    W
                        P
                                W
P- IV C -
         S
-[
        ]-
P
/- -
            1
T
                        ; T
W
1. F
          Е
S -
                  ; M
T -
               ; T
2. R
S
3. W
W
4. T
                   L
A-
F -- ]
P- I L
       - T
              (1) P 	 A(2) P 	 B
P- II R
        E
              : G W P W
P III W
         P
P IV C
         S
]
```

```
P
1
T
                 ; T
                                      W
1. F
           E
S
                                      ; M
     ; T
                       A C
                             ; T
2-R
S
3. W
W
          A
4. T
                    L
A- A -
    - - ]
F
P- I L - T
                   A (2) P B
               (1) P
P- II R
         E
        P
P III W
               : G
                             P
                     W
                                  W
P- IV C - S
[-
  - ]
P
                                                ;
                     A € - ; T-
        /
                     -
T
                                    ; T
   A \quad C \qquad \qquad W
                     Α.
```

```
_
         ]
1. F
          E
         C
                          C
                                      ; T
                  ; M
C
2- R
S
3. W
W
4. T
                   L
A-
F
P- I L - T
P II R
      Ε
             (1) P 	 A(2) P
                          В
P III W P
              : G
                    W
                           P
                                \mathbf{W}
P- IV C - S
[- - ]-
P
} -
T
                ; T
       W
1. F
S -
                      ; M
T
2. R
I
3. W
W
```

- - - -


```
4. T
                  L
G
     - - ]
F
P-IL T
P II R
       Ε
              (1) P 	 A(2) P 	 B
P III W P
              : G
                   W P
                              W
P- IV C - S
]
P
- ]
T
                    ; T
                                        \mathbf{W}
_
          1
1.T
          \mathbf{E}^{-}
S -
         ; M
                                 ; T
         ; T
2. R
T
3. W
w -
4. T
                  L
H
F -- ]
P- I L - T
              (1) P 	 A(2) P 	 B
P- II R
       E
              : G W P W
P III W
         P
P IV C
         S
]
```

```
P
( -
    /_
             T
                          ; T
                                              F
1
1. F
           E
S -
                                             ; T
                 ; M
2. R
U \quad C \quad W \quad :
3. W
w -
4. T
                     L
P-
F -- ]
P-IL T
P- II R
        E
                (1) P 	 A(2) P 	 B
P III W
               : G
                                   W
          P
                      W
                             P
P- IV C - S
( -
           }
P
1
T
             ; T
                                      W
1
1. F
           E
              :
```

```
S -
                              ; M
                    ; T
2. R
σ
          S
                                              ; Ľ
3. W
W
4. T
                          L
A- I
F
P I L
           - T
                         A (2) P
P II R
             Ε
                    (1) P
                                    В
P III W
            P
                           W
                                     P
                    : G
                                            \mathbf{W}
P- IV C -
            S
- ]
P
                                     ; W
- - ]
T
                                               ; T
                                  W
1. F
              E
S
                         ; M
                                                     ; T
2. R
\mathbf{C}
```

```
3. W - :
W
4. T
                      L
A-
F
          P I L
           T
P- II R
           E
                       A (2) P B
                 (1) P
P III W
                        W
                               P
          P
                 : G
                                      W
P- IV C -
           S
- ]
P
                              <del>;</del> W
]
T
                             ; T
W
1.F
            E
S -
           N
                        ; M
                                        N
                    N
2. R
A
                                   E
        - . T
3. W
W
                 AN C
                                N
                                   P
4. T
                      L
A-N
            М
                 P
F
         -
P- I L
         - T
P II R
                 (1) P
                       A (2) P
           E
                                  В
P III W
         P
                 : G W
                                P \hspace{1cm} W \\
```

```
P- IV C - S
]-
P
                 N
                    P
                       W
                           ;
N
   P
      W
                    N P
                           W
                               ; W
        C N P
     A N
]
   /
T
         P W ; W
   N
                               AN C
N
   P
1. F
         E -
                ; M
2. R
T
                  . I
3. W
W
                 F
              S
                       В
4. T
                 L
S- F - B-
F -- ]
P-IL T
P- II R
             (1) P
                A (2) P B
        Ē
                 W
P III W
        P
             : G
                       P
                            W
P- IV C -
        S
-[
         P
N
                     F B
                            ; W
      P
                 S
        W
S
        F
             В
( /
        ]
```



1. F S

LUK E :

[ - ]

-

T F B

; W

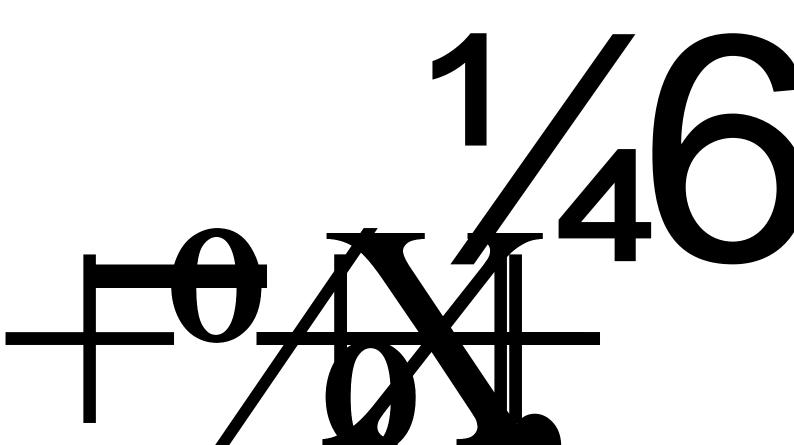
S M  $\square$ 

\_ \_ \_ \_ \_ \_

```
S -
                    ; M
2. R
T
                             : T
T
3. W
                   MOOC
W
4. T
                    L
₩ MOOC -
F -- ]
P- I L - T
P- II R
          E
               (1) P 	 A(2) P 	 B
P III W
         P
               : G
                     W
                            P
                                 W
P- IV C -
         S
_
P
                                           : W
MOOC -
                                        N
                                          P
W
                       W
                                        W MOOC
    ?; W
T
                                   W
                 ; W
    W MOOC
           1
1. F
           Е
S -
                         ; M
2. R
```

```
- - - - -
```

```
T -
                                                       . T
3. W
W
4. T
                        L
₩
           1
F
          - T
P I L
P II R
             E
                   (1) P
                          A (2) P
                                     В
P III W
            P
                   : G
                          \mathbf{W}
                                   P
                                         W
P- IV C -
            S
}
P
                   ; W
1
T
                              ; W
1. F
             E
S
                    ; M
2. R
T
3. ₩
W
                     D
4. T
                        L
D
```


`

|   |     |   | 1 | 2 | 3 | 4 | 5 | 6 |
|---|-----|---|---|---|---|---|---|---|
| U | 1-B | 1 | X | X | X | X | X | X |
| U | 2-B | 1 | X | X | X | X | X | X |
| U | 3-B | 1 | X | X | X | X | X | X |
| U | 4-B | 1 | X | X | X | X | X | X |
| U | 5-B | 1 | X | X | X | X | X | X |
| U | 6-B | 1 | X | X | X | X | X | X |
| U | 7-B | 1 | X | X | X | X | X | X |
| U | 8-B | 1 | X | X | X | X | X | X |
| U | 1-B | 2 | X | X | X | X | X | X |
| U | 2-B | 2 | X | X | X | X | X | X |
| U | 3-B | 2 | X | X | X | X | X | X |
| U | 4-B | 2 | X | X | X | X | X | X |
| U | 5-B | 2 | X | X | X | X | X | X |
| U | 6-B | 2 | X | X | X | X | X | X |

|   |     |   |   |   |   | T . | 1 | 1 |
|---|-----|---|---|---|---|-----|---|---|
| U | 7-B | 2 | X | X | X | X   | X | X |
| U | 8-B | 2 | X | X | X | X   | X | X |
| U | 1-B | 3 | X | X | X | X   | X | X |
| U | 2-B | 3 | X | X | X | X   | X | X |
| U | 3-B | 3 | X | X | X | X   | X | X |
| U | 4-B | 3 | X | X | X | X   | X | X |
| U | 5-B | 3 | X | X | X | X   | X | X |
| U | 6-B | 3 | X | X | X | X   | X | X |
| U | 7-B | 3 | X | X | X | X   | X | X |

X

6
6
6
7
10%+
10%+
15%+
%

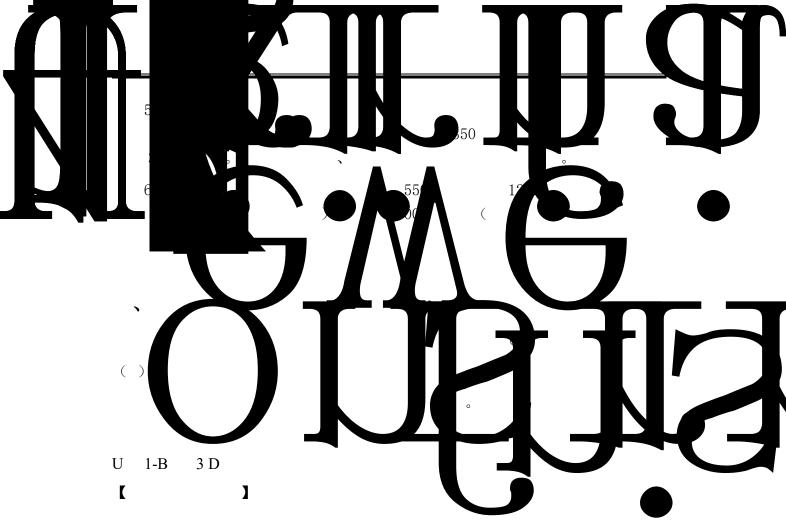


|    |   |      | 20                     |          | <b>√</b> | <b>√</b> | <b>✓</b> |
|----|---|------|------------------------|----------|----------|----------|----------|
|    |   |      | 30                     |          | <b>√</b> | <b>√</b> | <b>✓</b> |
|    | / |      | 20                     | <b>√</b> |          | <b>√</b> |          |
|    |   |      | 15                     | <b>√</b> |          | <b>√</b> |          |
|    |   |      | 15                     |          |          | <b>√</b> | <b>√</b> |
|    |   | 1.   | <b>√</b> 2.            | ✓        | 3.       |          |          |
|    |   | 1.   | <ul><li>✓ 2.</li></ul> | 3.       |          |          |          |
| 1. |   | :    | 100/                   |          | 150/     |          | 1.50/    |
|    |   | 60%+ | 10%+                   |          | 15%+     |          | 15%      |

\_\_\_\_

**«** 

2019 8 2019 8


|                             |        | (1);     |   | (2) |      |     |
|-----------------------------|--------|----------|---|-----|------|-----|
| С                           | Е      | (1); C   | Е | (2) |      |     |
| 031                         | 11810; | 03111820 | ) |     |      |     |
|                             |        |          |   |     |      |     |
|                             |        |          |   |     |      |     |
|                             |        |          |   |     |      |     |
|                             |        |          |   |     |      |     |
|                             |        |          |   |     |      |     |
|                             | 4      |          |   |     | 120( | 64+ |
|                             | -      |          |   |     |      | 56) |
|                             |        |          |   |     |      |     |
|                             |        |          |   |     |      |     |
| http://www.sden.sdu.edu.cn/ |        |          |   |     |      |     |

*"* "

K "

- -

C E E  $\bar{C}$ E . I : , C . T E . M ] « **»** [ ] 1. 150 0 2. 3. 70 120 4. 160



1. Functions in oral English:

Asking and responding to sensitive questions; Expressing annoyance; Clarifying and asking for clarification; Giving an overviews n

P IV G U

Pair conversation to ask and respond to sensitive questions; class presentation on "How to prepare for going to university"

Giving an overview in a presentation; Closing a presentation; Planning an essay based on a survey

U 2-B 3 C M

1. Functions in oral English:

Emphasizing; Expressing surprising; Resuming a story; Introducing personal anecdotes; Making comparisons; Making suppositions

2. Reading skills:

Use of imagery

3. Writing skill:

Describing habitual actions in the past

4. Language in use:

Making a collection of childhood memories

F } ₩ ; P -S ; P P- II A R R (1) A-(2) III L ; R IV G U 1

Pair conversation to introducing personal anecdotes and express surprising; group work to resume a story; write a report based on the collection of childhood memories by making comparisons and suppositions

## [ / ]

Making comparisons; Making suppositions; Understanding the use of imagery

# U 3-B 3 A A S

1. Functions in oral English:

Prompting for more information; Remembering; Talking about time; Expressing strong opinions; Conceding an argument; Refuting an argument; Summarizing

2. Reading skills:

Linking ideas

3. Writing skill:

Listing items

4. Language in use:

Producing a leaflet on places of artistic interest

Pair conversation to talk about time and prompt for more information; group discussion to express strong opinions with conceding an argument, refuting an argument and summarizing

[ / ]

Expressing strong opinions; Conceding an argument; Refuting an argument; Summarizing; Write by linking ideas

U 4-B 3 C T

5. Functions in oral English:

Expressing blame; Reassuring; Making comparisons; Talking about advantages and disadvantages; Checking plans; Starting off a discussion; Reacting to other's opinions; Inviting others to speak; Closing a discussion

6. Reading skills:

Using irony to create empathy; Fact or opinion; Paradox

7. Writing skill:

Giving examples

8. Language in use:

Defending a traditional job or trade

Pair conversation to talk about advantages and disadvantages with making comparisons and checking plans; group discussion by starting off a discussion, reacting to other's opinions, inviting others to speak and closing a discussion

Starting off a discussion; Reacting to other's opinions; Inviting others to speak; Closing a discussion; Understanding of using irony to create empathy and the use of Paradox

U 5-B 3 A P S

1. Functions in oral English:

Introducing a subject; Talking about customs and culture; Explaining the situation; Persuading people to volunteer

2. Reading skills:

Describing characters; Ordering and leaving out information

3. Writing skill:

Using the passive

4. Language in use:

Preparing a guide for immigrants to China

Pair conversation to talk about customs and culture; Class presentation to persuade people to volunteer; write a guide for immigrants to China

[ /

Talking about customs and culture; Persuading people to volunteer; Preparing a guide for immigrants to China

U 6-B 3 S F H

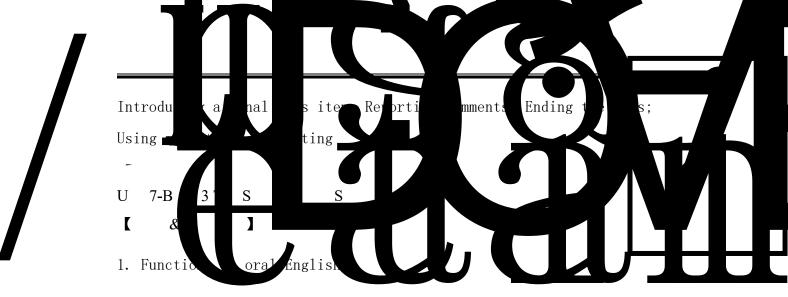
1. Functions in oral English:

Talking about buildings and materials; Asking about a personal history; Speculating; Introducing a final news item; Reporting comments; Ending the news

2. Reading skills:

Understanding writer's style; Using quotations

3. Writing skill:


Using quotations

4. Language in use:

Writing a nomination for an unsung hero

Pair conversation to talk about buildings and materials and ask about a personal history; Group work to introduce a final news item, report comments and end the news

[ / ]



Making plans; Asking for and confirming further information;

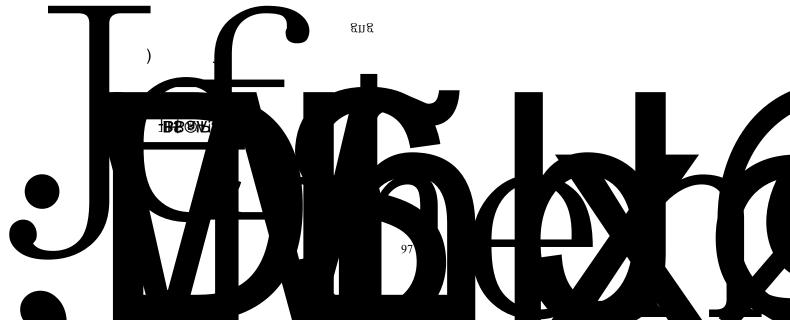
Setting the context; Recalling the details

2. Reading skills:

Narrative Balance

3. Writing skill:

Comparing and tcontrasting


4. . s R n

3.

Balan

2. R

Setr the Recals the



### 1. Functions in oral English:

Talking about entertainment and leisure activities; Making invitations; Talking about important festivals; Expressing partial agreement; Talking about opportunities

#### 2. Reading skills:

Understanding text organization; Metaphor

#### 3. Writing skill:

Narrating and describing customs and festivals

#### 4. Language in use:

Making a calendar of Chinese festivals

Pair conversation to talk about entertainment and leisure activities and make invitations; Group discussion to discuss the differences between Chinese festivals and western festivals by expressing partial agreement

Expressing partial agreement; Narrating and describing customs and festivals; understanding the cultural differences between China and western countries

#### 1. Functions in oral English:

Speculating about the future; Making enthusiastic comments; Reassuring people; Talking about attitudes and relationships at work; Talking about professional skills

#### 2. Reading skills:

Point of view; Focusing on informal writing; Structuring a short story

#### 3. Writing skill:

Writing a resume

#### 4. Language in use:

Applying for a job

#### 

Pair conversation to speculate about the future; class discussion about attitudes and relationships at work; mock interview for job hunting with a written resume

Talking about attitudes and relationships at work; Talking about professional skills Writing a resume

1. Functions in oral English:

Starting a meeting; Criticizing; Conceding; Talking about writers and writing; Describing someone's behavior; Calming people and responding

2. Reading skills:

Reacting to the text; Understanding writer's style

3. Writing skill:

Writing a book review

4. Language in use:

Presenting a Chinese writer

#### 

Pair conversation to talk about writers and writing; group discussion by calming people and responding; Class presentation to present a Chinese writer or a piece of Chinese writing

Talking about writers and writing; Writing a book review; Presenting a Chinese writer -

1. Functions in oral English:

Encouraging people to do things; Showing astonishment; Correcting someone; Sounding moderate; Quoting people and sources

2. Reading skills:

Focusing in formal writing

#### 3. Writing skill:

Describing trends

4. Language in use:

Analyzing fashion trends-

Pair conversation to encourage people to do things by showing astonishment; Class presentation to analyzing fashion trends in China

Quoting people and sources; Focusing in formal writing; analyzing fashion trends in China

1. Functions in oral English:

Checking and changing arrangement; Describing a tour of a building; Talking about research; Quoting statistics; Arguing against research

Understanding writer's attitude

3. Writing skill:

2. Reading skills:

Giving advice

4. Language in use:

Preparing a leaflet about using banks in China

P IV G U

Pair conversation to describe a tour of a building and check and change arrangement; Class presentation to present a research by quoting statistics

Describing a tour of a building; Quoting statistics; Giving advice

U 5-G S

1. Functions in oral English:

Talking about self-esteem; Making a strong point; Talking about vague amounts; Starting a discussion by agreeing on terms; Inviting opinions; Inviting a general agreement; Moving the conversation on 2. Reading skills:

Understanding text's organization; Evaluating the text

3. Writing skill:

Reporting research

4. Language in use:

Carrying out a press survey

Pair conversation to talk about self-esteem by making a strong point; Group discussion with starting a discussion by agreeing on terms, inviting opinions, inviting a general agreement and moving the conversation on [ / ]

Talking about self-esteem; Starting a discussion by agreeing on terms; Inviting opinions; Inviting a general agreement; Moving the conversation on-

U 6-A P

1. Functions in oral English:

Recommending; Saying how sure you are; Reporting thoughts, beliefs and opinions; Stating that both views are important; Stating that

U 7-N P L H

1. Functions in oral English:

Talking about accommodation; Complaining and criticizing; Giving warnings and making threats; Making superlative statements; Asking about meaning

2. Reading skills:

Humanizing the non-human; Rhetorical questions

3. Writing skill:

Making generalizations

4. Language in use:

Doing a survey on an ideal home

Pair conversation to talk about accommodation with some complaining and criticizing; Group discussion with making superlative statements and asking about meaning

Making superlative statements; Asking about meaning; Rhetorical questions

1. Functions in oral English:

Expressing willingness and unwillingness; Confirming and correcting; Talking about expectations and surprise; Listing points made by the previous speaker; Presenting a different argument

2. Reading skills:

Focusing on contrast; Using connotations

3. Writing skill:

Using strong or exaggerated language

4. Language in use:

Writing a travel brochure

Pair conversation to express willingness and unwillingness with confirming and correcting; Group discussion with listing points made by the previous speaker and presenting a different argument

Presenting a different argument; Using strong or exaggerated language in writing; Using connotations

•

|              | 1 | 2 | 3 | 4 | 5 | 6 |
|--------------|---|---|---|---|---|---|
| Unit1-Book 3 | X | X | X | X | X | X |
| Unit2-Book 3 | X | X | X | X | X | X |
| Unit3-Book 3 | X | X | Х | X | X | X |
| Unit4-Book 3 | X | X | X | X | X | X |

| Unit5-Book 3 | X | X | X | X | X | X |
|--------------|---|---|---|---|---|---|
| Unit6-Book 3 | X | X | X | X | X | X |
| Uni7-Book 3  | X | X | X | Х | X | X |
| Unit8-Book 3 | X | X | X | X | X | X |
| Unit1-Book 4 | X | X | X | X | X | X |
| Unit2-Book 4 | X | Х | X | Х | Х | X |
| Unit3-Book 4 | X | X | X | X | X | X |
| Unit4-Book 4 | X | X | X | Х | X | X |
| Unit5-Book 4 | X | Х | X | Х | X | X |
| Unit6-Book 4 | X | Х | X | Х | Х | X |
| Unit7-Book 4 | X | Х | X | Х | Х | X |
| Unit8-Book 4 | X | X | Х | Х | Х | X |

✓ ( ) ( %) (%) ( %) **(%**)  $\checkmark$  $\checkmark$ **√ √**  $\checkmark$  $\checkmark$ % ( %) % %

 4.K
 %
 %
 2014
 %
 %
 "
 "
 "
 %
 (1-2)

 5.
 2015
 7
 1
 %
 %
 (1-2)

 6.
 2015
 7
 1
 %
 %
 (1-2)

\_\_\_\_

**«** 

2019 8 2019 8

•

|  | ` | ( ) |   |   |
|--|---|-----|---|---|
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     | ( |   |
|  |   |     |   | ) |
|  |   |     |   |   |
|  |   |     |   |   |
|  |   |     |   |   |

`

.

[ ]

1、°¼4ô V
2、、、、

3, eve

3. 4 (1) (2) 。 7-8 4 4 1. Book One Unit 1 Global Warming [ -] 1) L 2) R : S 3) W : I F - -]-P- 1 W : L P- 2 R 1-4 P 3 W P 4 I E 1 / ]

111

[ \_ 1 1) L 2) R : S 3) W : P <u>[</u> \_ \_ ] \_ P\_ 1 W :L P\_ 2 R \_ 1-4 P 3 W P 4 I E 1 **(** / 1 [ \_ 1 1) L 2) R : F 3) W : P , \_ P\_ 1 W :L 1-4 P\_ 2 R P 3 W

P 4 I

E

1

**[** / 1 [ ] 1) L 2) R : S 3) W : P : L P\_ 1 W P\_ 2 R \_ 1-4 P 3 W P 4 I E ] **(** / ] [ \_ 1) L 2) R : F 3) W : P [ ]  $P_{-} 1 W : L$ P\_ 2 R 1-4 P 3 W

P 4 I E

] ] / 1 1) L \_ 2) L P 3) R : O 4) D O D 5) W S : I Ĺ \_ ] P\_ 1 A P\_ 2 R 1-4 P 3 E P 4 I E 1 1 / 0 1 1) L \_ 2) L I 3) R : S

A

4) D

- -

5)\_W S\_ : T

[ ]

P\_ 1 A

P\_ 2 R : 1-4

P 3 E

P 4I E

**[** / **]** 

[ ]

1) L \_

2) L S

3) R : H

4) D A

3) W S : B

<u>[</u> \_ \_ ]

P\_ 1 A

P\_ 2 R : 1-4

P 3 E

P 4I E

ľ J

**(** / 1 0 1 1) L \_ 2) L Ē 3) R : G 4) D 5) W S : C <u>[</u> \_ \_ ] P\_ 1 A  $P_{2} 2 R$ 1-4 : P 3 E P 4 I E 1 **(** / 1 0 1 1) L \_ 2) L E 3) R : G 4) D G

3) W

: C

S

P\_ 1 A P\_ 2 R 1-4 : P 3 E P 4 I E 1 **(** / 1 **L** \_ 1 1) S\_ 2) S : (1) G ; (2) P : S 3) A \_ ] P\_ 1 F\_ P\_ 2 U P\_ 3 R P 4 W P 5 I E 1 **(** / 1

**T** \_ 1 1) S\_ 2) S : K 3) A : O P 1 F P\_ 2 U P\_ 3 R P 4 W P 5I E 1 1 1 1) S 2) L : N -3) S \_ :(1) G ; (2)U\_ 3) A \_ : Ţ \_ ] P 1 F P 2 U

P

- - -

1) S \_ E <u>,</u> 2) L : F 3)  $S_{-}$  : (1) O(2)U 3)\_A \_ : I P\_ 1 F\_ \_ E P\_ 2 U E \_ E P\_ 3 R P 4 W E P 5 I E 1 1 1 30%。 70%。 ] 60% / 10% 15% 50%

120

1

**«** »

|    |       | 3.      |                        |     |          |          | 2.   |      |   |
|----|-------|---------|------------------------|-----|----------|----------|------|------|---|
|    |       |         |                        |     |          |          |      |      |   |
|    |       | 1.      | 2.                     | 3.  |          | 4.       | 5.   | 6.   | ( |
|    |       | 1.      | 2.                     | 3.  |          | ( )      |      |      |   |
|    |       | 1.      | <ul><li>✓ 2.</li></ul> |     | 3.       |          | ✓    | 4.   |   |
|    |       |         |                        |     |          |          |      |      |   |
|    |       | 1.      | (30)                   | 2.  | (        | 40) 3.   |      | (30) |   |
|    | 1     | 100     |                        |     |          |          |      |      |   |
|    |       |         |                        |     |          | (        |      | )    |   |
|    |       |         |                        | (%) |          |          |      |      |   |
|    |       |         |                        |     |          |          |      |      |   |
|    |       |         | 30                     |     |          | <b>√</b> | √    |      |   |
|    |       |         | 30                     |     |          | √        | √    |      |   |
|    |       |         | 15                     |     | √        | √        | √    |      |   |
|    |       |         | 10                     |     | <b>√</b> | √        | √    | √    |   |
|    |       |         | 15                     |     | √        | √        | √    | √    |   |
|    |       | 3.      | ✓                      | 2.  |          | ✓        | 3.   |      |   |
|    |       | 3.      | ✓                      | 2.  |          | 3        | 3.   |      |   |
|    |       | l       |                        |     |          |          |      |      |   |
| 3. |       | :       |                        |     |          |          |      |      |   |
|    |       | (60%) + | (15%                   | (a) |          | (15)     | %) + | /    |   |
|    | (10%) |         |                        |     |          |          |      |      |   |

```
]
                                                              (
     )
                                                                            2013
                                      》(1-3)
 (
            )
                                      》(1-3)
                                                                           2011
             )
 Joan McCormack, el≪
                                                                         2015
Colin Campbell, el ≪
                                          \rangle
                                                                          2015
John Slaght, el ≪
                                      \rangle\!\!\rangle
                                                                       2015
Dorothy E. Zemach, el \mbox{\ensuremath{\langle}}
                                                  »
2015
```

( ) » 2020 4 2020 5

T (E ) C  $\checkmark$ ( )  $\Box$  ( )  $\Box$  $\checkmark$ 3 64 32 32

C

2 C/C++ C/C++ C/C++

|  | _ | _ |     |  |
|--|---|---|-----|--|
|  | ` | 0 |     |  |
|  |   |   |     |  |
|  |   |   | o . |  |

| ľ   | 1    |   |        |   |   |   |   |
|-----|------|---|--------|---|---|---|---|
|     |      | • | 0      | 0 |   | 1 | 9 |
|     | 1.1  | 1 | 2<br>H | 3 | 4 | 5 | 6 |
|     | 1.2  |   |        | M |   |   |   |
| 3 / | 3.2  |   |        |   | Н |   |   |
|     |      |   |        |   |   |   |   |
|     | 5.1  | Н |        |   |   |   |   |
|     | 12.1 |   |        |   |   | M |   |
| 0   | 12.2 |   |        |   |   |   | L |

1.

2.

C

•

3.

4.

0

1 C T

**2**、 5

1 ( 5)<sub>o</sub>

2 C C ( **2**).

3 C (

2)。 【 】

 $\begin{array}{cccc} C & & C & & \circ & \\ C & & & & \end{array}$ 

τ ,

С С 1. C 2. C С 2 1 3、 5、 6 3)。 ( 1 2 NS 5) 3 ( 5、 6)。 1 1 1. 2. NS

3 C

3.

4.

|     |        |        | 1  |   |   |   |   |                         |
|-----|--------|--------|----|---|---|---|---|-------------------------|
|     |        |        | 2  |   |   | С |   |                         |
|     |        |        |    |   |   |   |   |                         |
| 1   |        |        |    |   | 0 |   |   |                         |
| 2   |        |        |    | С | 0 |   |   |                         |
| 3   | •      |        |    |   | C |   |   |                         |
| ľ   | ]      |        |    |   |   |   |   |                         |
|     | С      |        |    |   |   |   |   |                         |
|     | °      |        |    |   |   |   |   |                         |
| ľ   | C      |        |    |   |   | 0 |   |                         |
| l . | 4      |        |    |   |   |   |   |                         |
|     |        |        |    |   |   |   |   |                         |
|     | С      |        |    |   |   |   |   |                         |
|     |        |        |    |   |   |   |   |                         |
|     |        |        | 4  |   |   |   |   |                         |
| •   |        |        | 1  |   |   |   |   |                         |
|     |        |        | 2, | 5 |   |   |   |                         |
|     |        |        |    |   |   |   |   |                         |
| 1   |        |        | if |   |   |   | ( | 2)。                     |
| 2   |        | switch |    |   |   | ( |   | <b>2</b> ) <sub>°</sub> |
| 3   |        |        |    |   |   |   |   | (                       |
| 5). | 0      |        |    |   |   |   |   |                         |
| ľ   | 1      |        |    |   |   |   |   |                         |
|     | if     | switch |    |   |   |   | 0 |                         |
|     | switch |        | 0  |   |   |   |   |                         |
| ľ   | 1      |        |    |   |   |   |   |                         |

1.
2.
switch

5 【 】 2、 5

 1
 while
 do…while
 (
 2).

 2
 for
 (
 2).

 3
 break
 continue
 (
 2).

 4
 (
 (
 5).

while , do…while , for , continue break

0

while

do…while

for

- 1. break
- 2. continue

ľ 3. 4. 5. 2, 。( 2)。 ( )。 ( )。

I J

2、 5、 6 ( 2)。 1 2 ( 2)。 3 **5**)。 ( 6)。 4. ( ľ 1 1 1. 2. 3. 1. 2. 3. 10 1 2

2

3

0

0

[ ]

C

2.

2.

3.

2.

4 3 1

| 5 | 6<br>2  |  |   |
|---|---------|--|---|
| 6 | 7<br>1  |  |   |
| 7 | 8<br>1  |  | C |
| 8 | 9<br>1  |  | С |
| 9 | 10<br>1 |  | ۰ |

| 1  | 1  |   | С | 2 | 2 |  |   |  | 4  |
|----|----|---|---|---|---|--|---|--|----|
| 2  | 2  |   |   | 1 |   |  |   |  | 1  |
| 3  | 3  | С |   | 5 | 2 |  |   |  | 7  |
| 4  | 4  |   |   | 2 | 4 |  |   |  | 6  |
| 5  | 5  |   |   | 2 | 4 |  |   |  | 6  |
| 6  | 6  |   |   | 4 | 4 |  |   |  | 8  |
| 7  | 7  |   |   | 4 | 4 |  |   |  | 8  |
| 8  | 8  |   |   | 4 | 4 |  | 2 |  | 10 |
| 9  | 9  |   |   | 4 | 4 |  |   |  | 8  |
| 10 | 10 |   |   | 2 | 4 |  |   |  | 6  |

| 20   | 20 |  | 9 |  | 64 |
|------|----|--|---|--|----|
| 90 I | ა∠ |  |   |  | 04 |

° °

。 30%

70%。

|   |   | 2 | 52 |     |
|---|---|---|----|-----|
|   | ) | 3 | 14 | 100 |
| ( | , | 5 | 24 |     |
|   |   | 6 | 10 |     |
|   |   | 1 |    |     |
|   | ) | 2 |    | 100 |
|   | · | 4 | 30 |     |

|  | 3 |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |

| I J |          |    |    |     |
|-----|----------|----|----|-----|
|     |          |    |    |     |
|     |          |    |    |     |
|     |          |    |    |     |
|     | 0        | 10 | 10 | 20  |
|     | <u> </u> | 10 | 10 |     |
|     | 20       | 40 | 20 | 80  |
|     | 20       | 50 | 30 | 100 |

| 1 C | 4  | 0  | 4  |    | 8   |
|-----|----|----|----|----|-----|
| 2   | 0  | 10 | 3  | 5  | 15  |
| 3 C | 8  | 0  | 0  |    | 10  |
| 4   | 6  | 0  | 2  |    | 10  |
| 5   | 8  | 0  | 3  |    | 11  |
| 6   | 8  | 0  | 0  |    | 10  |
| 7   | 8  | 4  | 4  |    | 15  |
| 8   | 4  | 0  | 0  |    | 4   |
| 9   | 4  | 0  | 8  | 5  | 15  |
| 10  | 2  | 0  | 0  |    | 2   |
|     | 52 | 14 | 24 | 10 | 100 |

C 2017 " "

C 2017 " "

1. C/C++ ( ) 2004

2. C/C++ 2007.

3. C/C++ 2013.

\_\_\_\_

**«** 

•

1 ( ) 32 > 3 【 1、 1 2, 3, 1 

>

|               | 1   | 2  | 3  |
|---------------|-----|----|----|
| 8.1           | **  | ** | ** |
| 8.2           |     |    | *  |
| **** ( ) (2 ) | *** |    |    |
| ( ) (10 )     | c   |    | o  |
| ( ) (6 )      |     |    | •  |

o

( ) (4 ) K

· (8 )

*"* 

( ) (2 )

0

•

|    | 1 | 2 | 3 |  |
|----|---|---|---|--|
| 2  | X | X | X |  |
| 10 | X |   | X |  |
| 6  |   | X | X |  |
| 4  | X | X | X |  |
| 8  |   | X | X |  |
| 2  | X | X | X |  |

. 100

100%.

**«** 

2017. 7. 18 2017. 7. 21

| • |        |            |        |          |    |
|---|--------|------------|--------|----------|----|
|   |        |            |        |          |    |
|   | Trend, | Policy and | Social | Practice |    |
|   |        |            |        |          |    |
|   |        |            | `      |          |    |
|   | 4      |            |        |          |    |
|   |        |            |        |          |    |
|   |        |            |        |          |    |
|   | √      |            |        |          |    |
|   | 2      | 2          | 96 (   | 48       | 48 |
|   |        |            |        |          |    |
|   |        |            | 1-3    |          |    |
|   |        |            |        |          |    |
|   |        |            |        |          |    |

•

The Trend and Policy education is an important part of the ideological and political education of college students. Trend, Policy and Social Practice, which acts as the main channel position for students to be informed of the latest news, policy and topic of the world, is a compulsory course for students in our university. It plays an irreplaceable role in college education.

[ 1 [ ] 1. 2. 3. 1 1 3 K \*\* \*\* 1.2 \*\* \*\*\* **»** 8 2 8 **» »** « **»** 

2017 《2017  $\rangle$ 2017 (2 ) ( ) 1-45 1-4 1 > 2 2030" **»** 3

4

5 ( )

•

| 1 | 2 | 3 |  |
|---|---|---|--|
| X |   | X |  |
|   | X |   |  |
|   |   | X |  |
| X |   |   |  |
|   | X |   |  |
|   |   | X |  |

`

[ ] [ ]

50%。 = ×40%+ ×60%。

90 , 80 , 60 , 0 .

\_\_\_\_

**«** »

(1) sd02910630 (2) sd02910640

(3) sd02910650 (4) sd02910660

Physical education

: ■ □ □ □
□ □ □
128 128
4

. I -

•

« **»** « **»** 144 2 45 > , ( ) **»** ( )

( ) ,

( ) **`** ( ) 1, 2, 3, K 4, K « 5, ( ) » > 。

36 2 18 ° 144 1 4 ° 18 1 36 1 °

|     | 2  | 2  |
|-----|----|----|
|     | 10 | 10 |
|     | 12 | 12 |
|     | 4  | 4  |
|     | 2  | 2  |
|     | 3  | 3  |
|     | 5  | 5  |
|     | 5  | 5  |
|     | 15 | 15 |
|     | 4  | 4  |
|     | 2  | 2  |
| ( ) | 5  | 5  |
| ( ) | 4  | 4  |
| ( ) | 4  | 4  |
|     | 15 | 15 |
|     | 4  | 4  |

|     | 2  | 2  |
|-----|----|----|
| ( ) | 4  | 4  |
| ( ) | 4  | 4  |
| ( ) | 5  | 5  |
|     | 15 | 15 |
|     | 4  | 4  |



|   | 1000 ( ), 800 ( )                     | 20%  |      |     |
|---|---------------------------------------|------|------|-----|
|   |                                       | 40%  | 20%、 | 20% |
|   | , ,                                   | 10%  |      |     |
|   |                                       | 100% |      |     |
|   |                                       | 20%  |      |     |
|   |                                       | 10%  |      |     |
| 2 | 1000 ( ), 800 ( )                     | 20%  |      |     |
| 2 |                                       | 40%  | 20%、 | 20% |
|   | , ,                                   | 10%  |      |     |
|   |                                       | 100% |      |     |
|   | 50                                    | 10%  |      |     |
|   | ( ), ( )                              | 10%  |      |     |
| 3 | 1000 ( ), 800 ( )                     | 20%  |      |     |
| 3 |                                       | 50%  | 20%、 | 30% |
|   | , ,                                   | 10%  |      |     |
|   |                                       | 100% |      |     |
|   |                                       | 10%  |      |     |
|   | ( ), ( )                              | 10%  |      |     |
| 4 | 1000 ( ), 800 ( )                     | 20%  |      |     |
| 4 |                                       | 50%  | 20%、 | 30% |
|   | , , , , , , , , , , , , , , , , , , , | 10%  |      |     |
|   |                                       | 100% |      |     |

|     | 1 | 1000 | 800 |  | 50 | 50 |  |
|-----|---|------|-----|--|----|----|--|
| 100 |   |      |     |  |    |    |  |
| 95  |   |      |     |  |    |    |  |
| 90  |   |      |     |  |    |    |  |
| 88  |   |      |     |  |    |    |  |
| 86  |   |      |     |  |    |    |  |
| 84  |   |      |     |  |    |    |  |
| 82  |   |      |     |  |    |    |  |
| 80  |   |      |     |  |    |    |  |
| 78  |   |      |     |  |    |    |  |

|          |   |          |    |   | <br>     |    |   |   |
|----------|---|----------|----|---|----------|----|---|---|
| 76       |   |          |    |   |          |    |   |   |
| 74       |   |          |    |   |          |    |   |   |
| 72       |   |          |    |   |          |    |   |   |
| 70       |   |          |    |   |          |    |   |   |
| 60       |   |          |    |   |          |    |   |   |
| 50       |   |          |    |   |          |    |   |   |
| 40       |   |          |    |   |          |    |   |   |
| 30       |   |          |    |   |          |    |   |   |
| 20       |   |          |    |   |          |    |   |   |
| (        | ) |          |    |   |          |    |   |   |
| 1,       |   |          |    |   |          |    |   |   |
| 2,       |   |          |    | « |          | >> | Ō |   |
| 3,       |   |          |    | " |          | // |   | 0 |
| 4.       |   |          | 60 |   |          |    | 0 |   |
| 11       |   | 0        | 00 |   |          |    |   |   |
| 5、       |   | O        |    |   | 0        |    |   |   |
| 0,       |   |          |    |   | 0        |    |   |   |
| 6,       |   |          |    |   | Ü        |    | 0 |   |
| •        |   |          |    |   |          |    |   |   |
| •        |   |          |    |   |          |    |   |   |
|          |   |          |    |   |          |    |   |   |
| «        |   | <b>»</b> |    |   | 2009.    | )9 |   |   |
| «        |   | <b>»</b> |    |   | 2005. 09 | a  |   |   |
| <b>«</b> |   | <i>"</i> |    |   | 2005. 09 |    |   |   |
| <b>«</b> |   | <i>"</i> |    |   | 2005. 09 |    |   |   |
| "        |   | //       |    |   | 2000.0   | ,  |   |   |

2005.09

2005.09

**«** »

2017. 7. 6

•

| advano     | ed mathema | tics          |                      |
|------------|------------|---------------|----------------------|
| sd00       | 920120、s   | d00920130     |                      |
|            |            |               |                      |
|            |            |               |                      |
|            |            | $\nabla$      |                      |
|            |            |               |                      |
|            |            |               |                      |
| 10         |            | 16            | 0                    |
|            |            |               |                      |
|            |            |               |                      |
| <u>h</u> - | ttp://www. | .icourse163.o | rg/course/SDU-190001 |
| h-         | ttp://www. | .icourse163.o | rg/course/SDU-192001 |

`

•

Advanced Mathematics is a basic theoretical course, which is a compulsory module for science and engineering majors in higher

education. It is also a course for helping students obtain good learning habits and set up positive motivations. By learning this course, students can not only understand some basic concepts and theories, but also obtain some computing skills. It gradually cultivates students abilities with logical reasoning, spatial imagination, operational skills, and their abilities to generalize abstract problems, as well as to analyze and solve problems by utilizing the knowledge that they have learned comprehensively, which is helpful to lay a necessary mathematical foundation for follow-up courses and their further learning mathematics knowledge.

•

> ,

o

1.

2.

3. ;

,

[ ]

|     | 1 | 2 | 3 |
|-----|---|---|---|
| 1.1 |   |   |   |
| 1.2 |   |   |   |
| 0   |   |   |   |
| 2.1 |   |   |   |

```
Н—
        М-
             L—
  (2
。(2)
                     。(3)
   。(4)
                     。 (5)
    1
1
]
  (2
         2
]
     1
/
     ]
 (2
         2
1
      1
     1
/
 (2
         2
           )
]
     ] I
               II
     1
/
     2 )
 (2
```

```
1
1
/
        1
  (2
           2
              )
      1
1
       1
]
  /
  (2
          2
             )
]
.
       1
]
  /
   (2
           2 )
1
]
1
/
      ]
  (2
           2
              )
]
1
1
1
  /
  (2
           2
              )
1
1
```

**C** / 

```
/
            1
    (2
               2
                  )
          1
1
          ]
]
    (2
               2
                  )
1
                  (L' Hospital)
         1
          1
]
   /
    (2
               2
1
1
          1
            ]
    (2
                2
                   )
1
1
1
]
    (2
                2
                   )
1
         1
1
]
```

```
(2
             2
                 )
1
1
]
]
   (2
                 )
             2
1
1
         ]
]
   /
   (2
              2
1
1
1
1
   (2
              2
                 )
         ]
1
        1
1
   (2
              2
1
[
[
        1
         1
1
   (2
              2
                 )
```

```
(Newton) — (Leibniz)
         1
  /
           1
    (2
              2
                )
]
1
         1
   /
]
    (2
              2
                  )
1
1
1
/
           1
   (2
              2
                  )
1
        1
1
1
    (2
              2
]
         1
1
   /
```

```
(2
             2 )
[
        ]
y'' = f(y, y')
        ]
]
        y'' = f(x, y') y'' = f(y, y')
  /
2 )
  (2
        1
1
        ]
        1
   /
(2
             2
               )
]
        ]
]
]
   (2
             2
1
        ]
1
/
          (2
             2
]
•
       ` ]
```

```
1
[ /
  (2
          2
            )
1
     1
1
/
     1
  (2
          2
]
     1
      1
]
  /
  (2
          2
            )
1
1
1
1
  (2
            )
          2
      ])
1
1
      1
  /
(2
          2
            )
      1
```

```
1
   1
    /
                       1
                    2 )
1 (Taylor)
          (2
    \frac{1}{-},e<sup>x</sup>,sin x
                                   (Maclaurin)
    (
          ),
                                 \ln(1+x),(1+x)^{-1}
>
                  ]
          (2
                            2
    1
                                              \Gamma –
                                       \Gamma –
    1
                    1
    ] Γ-
          (2
                            2
    1
                                                                     2\pi
                [-\pi \quad \pi]
    1
    (
                       1
   (2
                            2 )
   1
                           \begin{bmatrix} 0 & \pi \end{bmatrix}
   2 L
                           [-L L]
                                                                         [0
   \Gamma
                  ]
   1
   1
          (2
                            2
                                  )
```

```
]
1
                             (
                  Γ-
              )
]
/
         1
   (2
              2
               )
        ]
[
[
                        ]
]
۰ (
   3 m 1 1
                     (
                         (
      n 2
                 )
   (2
                    n
[
        ] ] h
                                        1
                         (
                                      )
]
                                           1
```

```
1
]
1
/
       1
   (2
            2
        ]
1
1
/
       ]
  (2
            2
               )
1
1
                     (
                                  )
        1
]
  /
   (2
            2
               )
1
       ]
1
/
         1
  (2
            2
               )
1
       1
       1
]
  /
  (2
            2
               )
```

```
1
       ]
/
          ]
   (2
             2
                )
        ]
]
       1
/
        1
   (2
             2
                )
1
1
1
/
          ]
   (2
             2
                )
1
1
        1
1
   (2
             2
               )
]
1
       1
]
  /
  (2
             2
                )
        1
[
[
        1
       1
/
```

```
(2
              )
            2
]
1
                    (
                                )
1
/
       1
  (2
            2
             )
]
1
        1
/
       ]
   (2
            2
               )
1
1
       1
1
/
  (2
            2
               )
        ]
1
       ]
1
  /
   (2
            2
               )
       1
1
                    (
                         )
]
/
         ]
  (2
            2
               )
```

```
]
       1
]
  /
   (2
            2
               )
1
1
]
  /
         1
   (2
            2
               )
1
1
1
/
      1
  (2
            2
               )
1
                        (
       )
       1
1
]
  /
   (2
            2
               )
1
1
                    (
                         )
1
1
   (2
            2 )
```

```
]
       ( )
•
     ] ( )
(
                          )
      1
]
  /
  (2
         2
1
           (
     1
(
           )
                         (
                            )
      1
1
  /
  (2
         2
           )
1
     1
     1
/
  (2
         2
           )
]
     ]
]
/
     ]
  (2
         2
(
     1
)
         (
                         (
]
/
    1
  (2
         2 )
```

```
]
1
5
                (
       0
                  )
1
/
     ] 1-5
        2 )
 (2
     ]
            )
(
     ] ( )
(
                         )
     ]
1
 /
(2
        2
]
]
     1
]
 /
 (2
        2 )
]
     1
]
/
    1
(2
        2
          )
     ]
•
                  (
]
     1
/
```

|      | 1 | 2 | 3 |  |
|------|---|---|---|--|
| 1.1  | X |   |   |  |
| 1.2  | X | X |   |  |
| 1.3  | X | X | X |  |
| 1.4  | X | X |   |  |
| 1.5  | X |   | X |  |
| 1.6  | X | X |   |  |
| 1.7  |   | X | X |  |
|      |   |   |   |  |
|      |   |   |   |  |
|      | 1 | 2 | 3 |  |
| 2. 1 | X | X |   |  |
| 2. 2 | X | X |   |  |
| 2. 3 | X | X |   |  |
| 2. 4 | X | X |   |  |
| 2. 5 | X | X |   |  |
| 2. 6 | X |   |   |  |
| 2.7  |   | X | X |  |

|      | 1 | 2 | 3 |
|------|---|---|---|
| 3. 1 | X | X |   |
| 3.2  | X | X |   |
| 3. 3 | X | X | X |
| 3. 4 |   | X |   |

| 3.6  | X | X |   |  |  |  |  |
|------|---|---|---|--|--|--|--|
| 3. 7 |   | X | X |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      | 1 | 2 | 3 |  |  |  |  |
| 4.1  | X |   |   |  |  |  |  |
| 4.2  | X | X |   |  |  |  |  |
| 4.3  |   | X | X |  |  |  |  |
| 4.4  | X |   |   |  |  |  |  |
| 4.5  | X | X | X |  |  |  |  |
| 4.6  | X | X | X |  |  |  |  |
| 4. 7 |   | X | X |  |  |  |  |
| 4.8  |   | X | X |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      | 1 | 2 | 3 |  |  |  |  |
| 5. 1 | X | X |   |  |  |  |  |
| 5. 2 |   | X |   |  |  |  |  |
| 5. 3 |   | X |   |  |  |  |  |
| 5. 4 | X | X |   |  |  |  |  |
| 5. 5 |   | X |   |  |  |  |  |
| 5. 6 |   | X | X |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      |   |   |   |  |  |  |  |
|      | 1 | 2 | 3 |  |  |  |  |
| 6. 1 | X | X |   |  |  |  |  |
| 6. 2 | X | X | X |  |  |  |  |

|       | 1 | <b>I</b> | 1 | T | 1 |  |
|-------|---|----------|---|---|---|--|
| 6. 3  | X | X        |   |   |   |  |
| 6. 4  | X |          | X |   |   |  |
| 6.5   |   | X        | X |   |   |  |
| 6.6   | X |          | X |   |   |  |
| 6. 7  | X |          |   |   |   |  |
| 6.8   | X | X        |   |   |   |  |
| 6.9   | X | X        |   |   |   |  |
| 6. 10 |   | X        | X |   |   |  |
|       |   |          |   |   |   |  |
|       |   |          |   |   |   |  |
|       | 1 | 2        | 3 |   |   |  |
| 7. 1  | X |          |   |   |   |  |
| 7.2   | X | X        |   |   |   |  |
| 7.3   | X | X        |   |   |   |  |
| 7. 4  | X | X        |   |   |   |  |
| 7. 5  | X |          |   |   |   |  |
| 7. 6  | X |          |   |   |   |  |
| 7. 7  |   | X        | X |   |   |  |
|       |   |          |   |   |   |  |
|       |   |          |   |   |   |  |
|       | 1 | 2        | 3 |   |   |  |
| 8. 1  | X |          |   |   |   |  |
| 8.2   | X | X        |   |   |   |  |
| 8.3   | X |          |   |   |   |  |
| 8.4   | X | X        | X |   |   |  |
| 8. 5  | X | X        |   |   |   |  |

| 8.6   | X | X |   |     |   |  |  |
|-------|---|---|---|-----|---|--|--|
| 8. 7  | X |   |   |     |   |  |  |
| 8.8   | X | X |   |     |   |  |  |
| 8.9   |   | X | X |     |   |  |  |
|       |   |   |   |     |   |  |  |
|       |   |   |   |     |   |  |  |
|       | 1 | 2 | 3 |     |   |  |  |
| 9. 1  | X |   |   |     |   |  |  |
| 9. 2  | X | X |   |     |   |  |  |
| 9. 3  | X | X |   |     |   |  |  |
| 9.4   |   | X | X |     |   |  |  |
| 9.5   | X | X |   |     |   |  |  |
| 9.6   | X | X |   |     |   |  |  |
| 9. 7  | X | X |   |     |   |  |  |
| 9.8   |   | X |   |     |   |  |  |
| 9.9   |   | X | Х |     |   |  |  |
|       |   |   |   |     |   |  |  |
|       |   |   |   |     |   |  |  |
|       | 1 | 2 | 3 |     |   |  |  |
| 10.1  |   |   |   |     |   |  |  |
|       | X | X |   |     |   |  |  |
| 10. 2 |   |   |   |     |   |  |  |
|       | X | X |   |     |   |  |  |
| 10. 3 |   |   |   |     |   |  |  |
|       | X | X | X |     |   |  |  |
| 10.4  |   |   |   |     |   |  |  |
|       | X |   |   |     |   |  |  |
|       |   | l | l | l . | I |  |  |

10.5 X

10.6 X X

10.7 X X

10.8 X X X

10.9 X

10. 10 X X

| %       |     |    |    |    |    |     |
|---------|-----|----|----|----|----|-----|
| `       |     | 2  | 5  | 5  | 5  | 17  |
|         |     | 2  | 5  | 5  | 5  | 17  |
|         |     | 2  | 5  | 5  | 5  | 17  |
|         |     | 2  | 10 | 10 | 8  | 30  |
|         |     | 2  | 6  | 6  | 5  | 19  |
|         |     | 10 | 31 | 31 | 28 | 100 |
| 1.      | 2.  | 10 |    | 3. | 20 | 100 |
|         |     |    |    |    |    |     |
| abla 1. | 2.  |    | 3. |    |    |     |
| 70%     | 30% |    |    |    |    |     |
|         |     |    |    |    |    |     |

(2) · · · · ·

 $\bigcirc$  2. 3.

|   | <b>√</b> ]1.    |        |              | 2   | ۷.    |    | 3. | •     |
|---|-----------------|--------|--------------|-----|-------|----|----|-------|
|   | 4.              |        |              |     |       |    |    |       |
|   |                 |        |              |     |       |    |    | 00    |
|   | $\sqrt{1}$ . 2. | 3.     | 4.           | 5.  | 6.    | ,  | 7. |       |
|   | ( )             |        |              |     |       |    |    |       |
|   | <b>√</b> 1.     | 2.     | 3.           |     | 4.    | (  | )  |       |
| 1 |                 | 2.     | $\sqrt{3}$ . |     | 4.    |    | 5. |       |
|   |                 |        |              |     |       |    |    |       |
| 1 | . (             | 40 ) % | 2.           | ( 3 | 0 ) % | 3. | (3 | 0 ) % |
|   |                 |        |              |     |       |    |    |       |
|   |                 |        |              |     |       |    |    |       |
|   |                 | %      |              |     |       |    |    |       |
|   |                 |        |              |     |       |    |    |       |
|   |                 |        |              | 4   | 8     | 6  | 4  | 22    |
|   |                 |        |              |     |       |    |    |       |
|   |                 |        |              | 2   | 4     | 4  | 4  | 14    |
|   |                 |        |              | 4   | 6     | 6  | 4  | 20    |
|   |                 |        |              | 4   | 6     | 6  | 4  | 20    |

|  |             |     | 4  | 10 | 5         | 5  | 24  |
|--|-------------|-----|----|----|-----------|----|-----|
|  |             |     |    |    |           |    |     |
|  |             |     |    |    |           |    |     |
|  |             |     | 18 | 34 | 27        | 21 | 100 |
|  | 1.          | 2.  |    | V  | <b>3.</b> |    |     |
|  | <b>▽</b> 1. | 2.  |    | 3. |           |    |     |
|  | 70%         | 30% |    |    |           |    |     |
|  |             |     |    |    |           |    |     |
|  |             |     |    |    |           |    |     |
|  |             |     |    |    |           |    |     |

• [ ] ( ) (1) ( [1] 2011.6 [2] , (2) ( 2011.6 **]** 3-5 ) [1] 2011. 9 [2] 2013.9

\_\_\_\_

**«** »

2020 3 2020 3

•

| Linear Algebra |            |  |      |    |   |   |   |  |  |
|----------------|------------|--|------|----|---|---|---|--|--|
| Sd019211       | Sd01921130 |  |      |    |   |   |   |  |  |
|                |            |  |      |    |   |   |   |  |  |
|                |            |  |      |    |   |   |   |  |  |
|                |            |  | ]    |    |   |   |   |  |  |
|                |            |  |      |    |   |   |   |  |  |
| <b>\</b>       |            |  |      |    |   |   |   |  |  |
| 3              |            |  | 48 ( | 48 | 0 | 0 | ) |  |  |
|                |            |  |      |    |   |   |   |  |  |
|                |            |  |      |    |   |   |   |  |  |
|                |            |  |      |    |   |   |   |  |  |

[ ]

0 0

\_\_\_\_\_\_

|   |   |     | - |     |
|---|---|-----|---|-----|
| L | - |     |   | -   |
|   |   | -   |   | -   |
| - |   |     |   |     |
| - |   | . I |   |     |
|   |   | Т _ | - | - , |
| , |   |     | - | -,  |
|   | , | ,   |   |     |
| T |   |     |   |     |
|   |   |     |   |     |
| • |   |     |   |     |
|   |   |     |   |     |
|   |   |     |   |     |
|   |   |     |   | 0   |

|   |   | 0 |
|---|---|---|
|   |   |   |
| 4 | o |   |
| • |   |   |
|   |   | 0 |

|     | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| 1.1 |   |   |   |   |
| 1.2 |   |   |   |   |
| 2.1 |   |   |   |   |
| 2.2 |   |   |   |   |

`

1.

2.

•

0

3.

4.

[ ] 1 ,

1.

2. .

3. ( )

4. .

.

( ) ( ) ľ 1 1 2 1. 2. 3. > > 4. 1 1 1 1-4

1.

0

2.

3.

•

0

•

0

1-4

1.

2.

4.

5. >

r j

o o

0 0

• •

0

0

T J

1-4

1.

2.

3.

4.

0

5.

6. .

7.

。 【 】

0

0

•

.

0

`

| 1  |  | 0 |   | o         |
|----|--|---|---|-----------|
| 2  |  |   |   | 0         |
| 3  |  |   |   | 0         |
| 4  |  |   | 0 | 0         |
| 5  |  |   |   | o         |
| 6  |  |   | o | o         |
| 7  |  |   |   | <i>""</i> |
| 8  |  |   |   | •         |
| 9  |  |   |   |           |
| 10 |  |   | 0 | o         |

•

| 1 |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|

| 2 |  |  |  |  |  |
|---|--|--|--|--|--|
| 3 |  |  |  |  |  |
| 4 |  |  |  |  |  |
| 5 |  |  |  |  |  |
|   |  |  |  |  |  |

**t** 1

|       | 80%。 | 0 |
|-------|------|---|
|       |      |   |
| (80%) |      |   |
| (20%) |      |   |

| 0 | ,  | 0  | o  | o  |     |
|---|----|----|----|----|-----|
|   |    | ,  | 0  |    |     |
| 0 |    | 0  | •  |    | 0   |
|   |    | o  |    |    |     |
|   |    |    |    | c  |     |
| 0 | o  |    | ō  |    | o   |
|   |    | Г  | 1  |    | T   |
|   |    |    |    |    |     |
|   | 50 | 10 | 20 | 0  | 80  |
|   | 0  | 0  | 5  | 15 | 20  |
|   | 50 | 10 | 25 | 15 | 100 |

[ ]

| 4 | 10 | 5  | 10 | 0 | 25  |
|---|----|----|----|---|-----|
| 5 | 5  | 5  | 15 | 0 | 25  |
|   | 50 | 20 | 30 | 0 | 100 |

" A ( ) В ( ) C

192

>

A

В

A > > >

(

,

A

>

В

A

•

>

В

•

0

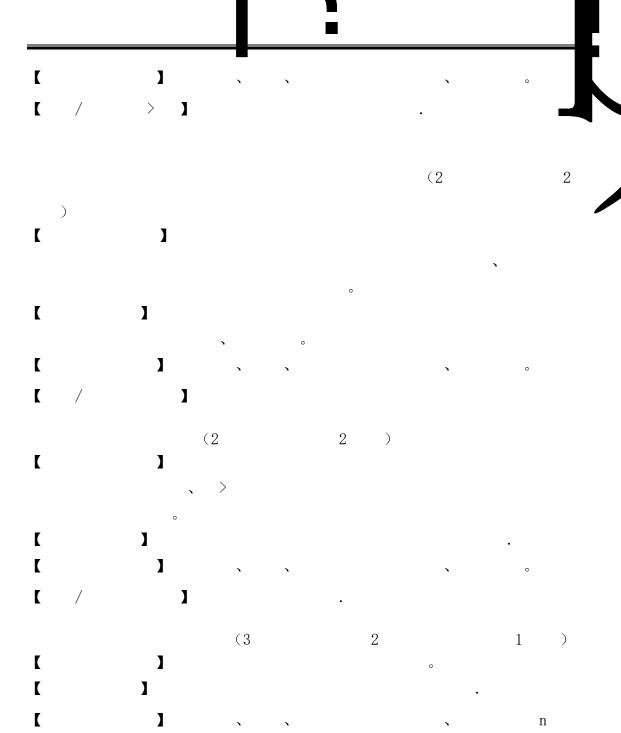
*""* 

" " %

\_\_\_\_\_

**«** 

2017


- - - - - - - -

\_ T \_ \_ . I

. T .

( )

```
]
1.
2.
3.
                         ]
                                     1
                                               3
  1. 1
                  (2
                                  )
                              2
           1
1
]
1
                 (2
                             2
                                 )
1
1
           1
[
             ]
>
                           (3
                                       2
1
     )
           ]
> ]
```



```
(3
                                  2
                                                1
)
[
           1
          1
1
]
                     (2
                                  2
                                       )
]
1
]
]
                             (2
                                          2
                                              )
           1
]
           1
1
         (3
                      3
                           )
1
]
1
1
           (2
                        2
                            )
1
```

```
1
1
]
             (5
                            4
                                            1
                                                 )
             1
1
             1
]
                    (2
                                   2
                                        )
             1
1
             1
]
             (2
]
                            2
                                 )
1
             1
]
                            2
                                      3
                  1
  1. 1
              X
  1.2
              X
                        X
  1.3
              X
                        X
              X
                        X
  2. 1
                        X
  2. 2
              X
                                   X
```

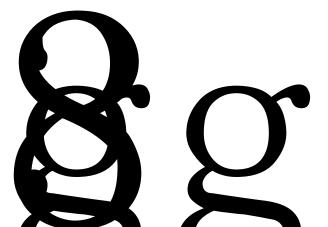
| 2.3  | X | X | X |  |
|------|---|---|---|--|
| 3.1  | X | X |   |  |
| 3.2  | X |   |   |  |
| 3.3  | X | X | X |  |
| 4.1  | X | X | X |  |
| 4.2  | X | X | X |  |
| 4.3  | X |   | X |  |
| 5. 1 | X |   |   |  |
| 5. 2 | X |   |   |  |
| 6. 1 | X | X | X |  |
| 6. 2 | X | X | X |  |
| 6.3  | X | X | X |  |
| 7. 1 | X |   | X |  |
| 7.2  | X |   | X |  |

`

.

**[** ] 20%.

[ ]


|    |           |           | 100      | 0 |
|----|-----------|-----------|----------|---|
|    |           |           |          |   |
| 1. | (30) % 2. | (50) % 3. | ( 20 ) % |   |
| %  |           |           |          |   |

|  | 2  | 3   | 3  | 2  | 10   |
|--|----|-----|----|----|------|
|  | 2  | 5   | 5  | 3  | 15   |
|  | 5  | 5   | 5  | 5  | 20   |
|  | 5  | 5   | 5  | 5  | 20   |
|  | 2  | 3   | 3  | 2  | 10   |
|  | 5  | 5   | 10 | 5  | 25   |
|  | 21 | 26  | 31 | 22 | 100  |
|  |    |     |    |    |      |
|  |    |     |    |    |      |
|  |    | 20% |    |    | 80%. |

| • |   |   |   |   |          |          |      |
|---|---|---|---|---|----------|----------|------|
| • | 1 |   |   |   |          |          |      |
|   | « |   | _ |   | <b>»</b> |          | 2012 |
| • | 1 | « |   | _ |          | <b>»</b> |      |
|   |   |   |   |   |          |          |      |

2017.3 2017.4

Fundamentals of Digital Electronic Technology Sd01731350



《Fundamentals of Digital Electronic Technology》 is an introductory course for students majoring in automation, electrical engineering, measurement and control technology and instrumentation, logistics engineering, biomedical engineering and other professional undergraduate study of electronic technology. It is a scientific foundation platform course with strong logic, rapid technological development, and strong practical and engineering characteristics. The main contents of this course are: integrated logic gate circuit, digital logic foundation, analysis and design of combinational logic circuit, trigger, analysis and design of sequential logic circuit, pulse generation and shaping circuit, A/D and D/A converter etc. Through the study of this course, students can not only improve the

ability to analyze problems and solve practical engineering problems,

but also lay a good foundation for the design of large-scale digital

systems and the study of follow-up courses in the future.

, A/D D/A .

[1.2 4.1] 。

[1.2] 。【2.1】 。【2.1】 。【4.1】 ( Multisim 【4.1】 0, ( ) [1.2] 1 1 **(** / 1

|   |      |         | ( | ) | [1.2]           |         |
|---|------|---------|---|---|-----------------|---------|
|   | 1.1  |         |   |   |                 |         |
|   | 1.2  | BCD     |   |   |                 |         |
|   | 1.3  |         |   |   |                 |         |
|   | 1.4  |         |   |   |                 |         |
| ľ |      | 1       |   |   |                 |         |
|   |      |         |   |   |                 |         |
|   |      |         |   |   |                 |         |
|   | o    | 8421BCD |   |   | 0               | ( , , , |
|   | , )  |         | 0 |   |                 | o       |
|   |      |         | 0 |   |                 |         |
| ľ |      | 1       |   |   |                 |         |
|   |      | 4       |   |   |                 |         |
|   |      |         |   |   | `               |         |
|   |      |         |   |   | 0               | o       |
|   |      |         | ` |   |                 | c       |
|   |      |         |   | ` |                 |         |
|   | Ō    |         |   |   |                 |         |
|   | /    |         | 1 |   |                 |         |
|   |      |         | ` |   | `               | `       |
|   |      | `       |   |   | `               | o       |
|   |      |         |   |   | (4 ) [1.2, 4.1] |         |
|   | 2. 1 |         |   |   |                 |         |
|   | 2. 2 |         |   |   |                 |         |
|   |      | ]       |   |   |                 |         |

**(** / 1 ) **[**1.2**]** (4 3. 1 3.2 3.3 TTL 3.4 MOS 3.5 1 MOS . TTL, CMOS TTL CMOS , CMOS OC , 1 0 1 TTL OC CMOS

| <b>(</b> / |      | ]  |         |               |   |   |   |   |
|------------|------|----|---------|---------------|---|---|---|---|
|            | `    |    |         | , TTL         |   |   |   | ` |
| TTL        |      |    |         | 、 OC          | ` |   |   | ` |
| •          | CMOS |    |         | , CMOS        |   |   |   |   |
| , CMOS     |      |    |         | `             |   |   |   | 0 |
|            |      | (8 | ) 【1.2, | 4. 1 <b>]</b> |   |   |   |   |
| 4. 1       |      |    |         |               |   |   |   |   |
| 4.2        |      |    |         |               |   |   |   |   |
| 4. 3       |      |    |         |               |   |   |   |   |
| 4. 4       |      |    |         |               |   |   |   |   |
| 4.5        |      |    |         |               |   |   |   |   |
| 4.6        |      |    |         |               |   |   |   |   |
| 4.7        |      |    |         |               |   |   |   |   |
| <b>T</b>   | 1    |    |         |               |   |   |   |   |
|            |      |    |         |               | ` |   |   | 0 |
|            | `    | `  | `       |               |   |   |   |   |
|            |      | 0  |         |               |   |   |   | 0 |
|            |      |    |         |               |   | 0 |   |   |
|            |      |    |         |               |   |   |   |   |
| ľ          | 1    |    |         |               |   |   |   |   |
|            |      |    |         |               |   |   |   |   |
|            |      |    |         | 0             |   |   |   |   |
|            |      |    |         |               |   | ` | 0 |   |
|            |      |    |         |               |   |   |   |   |
|            |      |    |         |               |   |   |   |   |
|            |      |    | 0       |               | ` |   | ` | ` |
|            |      | o  |         |               |   |   |   |   |
| <b>[</b> / |      | 1  |         |               |   |   |   |   |

) [1.2] ( 5. 1 5. 2 5. 3 1 RS RS , JK RS D 1 [ 1 ) [1.2, 4.1] (10 6. 1 6.2 6.3

210

6.4

6.5

1 > 1 1 ) [1.2, 4.1] ( 7. 1 7. 2 555 7. 3 7.4 7.5 1 555 555 >

1 555 555 555 [ / 1 **、**555 ) [1.2] (4 8.1 8.2 8.3 1 ROM, RAM ROM ROM, RAM 1 ROM, RAM > ROM ROM RAM RAM / 1 ROM, RAM 、ROM、RAM ROM (4 ) **[**1.2**]** 

9.1 9.2 D A 9.3 A D 1 A/D, D/A D/A, A/D D/A, A/D D/A, A/D 1 D/A D/A A/DT D/A A/D , A/DA/D ) **【4.1】** (10 10.1 PLD 10.2 PLD 10.3 PLD 10.4 1

EDA

EDA

, EDA ,

| 1 | 4 |
|---|---|
| √ |   |
| √ |   |
| √ |   |
| √ | √ |
| √ |   |
| √ | √ |
| √ | √ |
| √ |   |
| √ |   |

>

。 EWB

o

o

:

0

1,

2,

3,

1 2 3 4 5 6 1 1.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

1 1.2 \( \sqrt{1} \) \( \sqrt{1} \)

1 2 3

456

2017. 3 2017. 4

Experiment of Digital Electronic Technology Foundation Sd01732270  $\checkmark$  $\checkmark$  $\checkmark$ 1 32 32

•

《Experiment of Digital Electronic Technology Foundation》is an experiment course matched with 《Fundamentals of Digital Electronic Technology . This course is an important specialized basic course for undergraduates majoring in automation, electrical engineering, measurement and control technology and instrument, biomedical engineering, logistics engineering and so on, and it is an important bridge between basic courses and professional courses. The main contents of this course are: parameter measurement of integrated gate circuit, test and design of combinational logic circuit, application of medium scale integrated combinational logic circuit, test and application of integrated trigger, integrated counter experiment, integrated register experiment, integrated 555 timer application, comprehensive design experiment of digital electronic technology and virtual experiment on computer simulation of digital electronic circuit. This experiment course can stimulate students' interest in learning, train students' ability to analyze and solve problems, and lay a solid foundation for the study of follow-up courses.

nt d

。【4.2,4.3 4.4】 。**【**4. 1, 2) 2, **[**4.3] 3, 。**【**4. 4] 4, **(**4.2**)** 1. (3) (4.4)1.1 74LS00、 74LS86 1.2 74LS00 1.3 ] [ 1 TTL 1 ) [4.2 4.3] 2. (3 2. 1 2.2 2.3

2.4

4. 1 74LS151 4.2 74LS85 4.3 74LS151 4.4 1 > 1 5. (3 ) **[**4.2 4.3 4.4**]** 74LS74 5. 1 74LS74 5.2 74LS74、74LS00 5.3 2 1 1 1 74LS7¾ > 74LS74

```
(3 ) [4.2 4.3 4.4]
6.
   6. 1
              74HC161
   6.2
   6.3
                             CP
          74HC161
   6.4
          74HC161 74LS00
1
1
                       CMOS
        1
CMOS
7.
                     (3 ) 【4.2 4.3 4.4】
   7. 1
                74LS194
   7.2
                74LS194
   7.3
                74LS194
   7.4
           74LS194
1
1
1
```

74LS194

> 74LS194

8.555 (2.5 ) [4.2 4.3 4.4]

8.1

8.2

8.3

8.4

**5**55

555

0

o

o

9. — (5

1 1 10. (3) [4.2,4.3 4.4.4.5] 10.1 Multisim 10.2 Multisim 10.3 Multisim ]  ${\it Multisim}$ 1 Multisim ${\tt Multisim}$ 1 Multisim

|    | 4        |
|----|----------|
| 1  | <b>√</b> |
| 2  | √        |
| 3  | √        |
| 4  | √        |
| 5  | √        |
| 6  | √        |
| 7  | √        |
| 8  | √        |
| 9  | √        |
| 10 | √        |

**«** 

0

°

 I
 J
 +
 +
 +
 +
 )

 I
 J
 10%
 10%
 20%

 60%。

5

° 【 】

1 2 3 4 5 6 7 8 9 10 4.2 **√**  $\checkmark$  $\checkmark$  $\checkmark$  $\checkmark$  $\checkmark$ 4.3 **√ √ √**  $\checkmark$ 4 4.4 **√**  $\checkmark$ **√** 4. 5 √ **√**  $\checkmark$ 

```
1
    2
    3
    4
    5
    6
    7
    8 555
    9
    10
«
                                               \rangle
2014. 8.
[ ]
                  «
                                                    2008.1
                                »
                                                       EDA
                                                             >>
              2008.6
              «
                                                             2008.4
                                        \rangle\!\!\rangle
```

\_\_\_\_

**«** 

2017. 3 2. 17. 4

· ·

《Fundamentals of Analog Electronic Technology》 is an introductory course for students majoring in automation, electrical engineering, measurement and control technology and instrumentation, logistics engineering, biomedical engineering and other professional undergraduate study of electronic technology. It is a scientific foundation platform course with strong practical and engineering characteristics. The main contents of this course are: semiconductor devices and applications, basic amplifier, negative feedback amplifier circuit, integrated operational amplifier and its application; signal generating circuit and voltage stabilizing power supply, etc. It enables students to obtain the basic knowledge, basic theory and basic skills of analysis and design on common electronic devices, circuits and systems. The course lays the foundation for the following related courses and the application of electronic technology in the specialty.

**(**1. 2**)** 

[1.2]

[1.2]

。【1.2 4.1】 ) [1.2] (4 1. 1 1.2 1.3 1 PN 1 1 ) [ 1.2] (8 2. 1 2. 2 2. 3 2.4 2.5 2.6 2. 7 1 

·

(4 ) **[**1.2**]** 

5. 15. 2

**5.** 3

5. 45. 5

`

0

[ ]

0

1 ) [1.2] (8 6. 1 6. 2 6.3 6.4 6.5 1  $A_{\rm f}\,$ 1 1

1.2,4.1 (4 7. 1 7. 2 7.3 7.4 7.5 1 1 **(** / 1 ) 【1.2,】 (8 8. 1

8.2 RC

8.3 LC

8.4

8.5

8.6

8.7 1 RC LC 1 1 ) [1.2,4.1] (4 9. 1 9.2 9.3 9.4 1

ľ

· ·

•

0

° ]

•

•

| 1        | 4 |
|----------|---|
| √        |   |
| <b>√</b> |   |
| <b>√</b> |   |
| √        |   |
| √        |   |
| √        |   |
| √        | √ |
| √        |   |
| √        | √ |

> EWB

0

0

:

1,

0

2、

3、

О

7. 1

|   |      | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|------|---|---|---|---|---|---|---|
| 1 | 1.2  | √ | √ | √ | √ | √ | √ | √ |
| 4 | 4. 1 |   |   |   |   |   | √ | √ |

7.1

2017. 3 2017. 4

Experiment of Analog Electronic Technology Foundation Sd01732270 XXXX  $\checkmark$  $\checkmark$  $\checkmark$ 1 32 32

•

•

0

《Experiment of Analog Electronic Technology Foundation》 is an experiment course matched with 《Fundamentals of Analog Electronic Technology . This course is an important specialized basic course for undergraduates majoring in automation, electrical engineering, measurement and control technology and instrument, biomedical engineering, logistics engineering and so on, and it is an important bridge between basic courses and professional courses. The main contents of this course are: usage and measurement of common electronic instruments, basic amplifier experiment, differential amplifier experiment, feed-back amplifier experiment, application experiment of integrated operational amplifier, signal generator experiment, stabilized power supply experiment, comprehensive experiment of Analog Electronic Technology and virtual experiment on computer simulation of analog electronic circuit. The course can stimulate students' interest in learning, cultivate students' scientific research ability, and cultivate students' ability to analyze and solve problems.

**«** 

•

。【4.2,4.3 4.4】 1, 。**【**4. 2] 2, 【4.3】 3, 。【4**.** 4] 4, 【4.2】 1. (3 ) [4.3 4.4] 1.1 1.2 1.3 1 1 > 0 1 2. (3 ) 【4.3 4.4】 2. 1

242

2.2

2. 3 2.4 1 1 1 3 ) [4.3 4.4] (2.5 3. 1 0

τ :

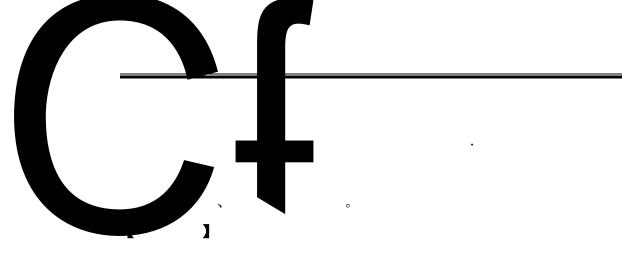
0

) 【4.3 4.4】 4. (2.5 4. 1 4. 2 4. 3 1 1 1 ) [4.3 4.4] 5. (2.5 5. 1 5. 2 5. 3

[ ]

0

0


6. (2.5 ) 【4.2 4.3 4.4】

**6.** 1

6. 2

6.3 °

ľ J



RC

1

8. (≨5 o ) 【402 4.3 4.4】

**8.** 1

8.2 8.3

1

1

1/4 **\$**^yp

9. **,** m

9.2 PWM 6.3 6.4 1 1 > PWM PWM 1 PWM (4.2,4.3,4.4) 10. Multisim (2 10.1 Multisim 10.2 Multisim 10.3 Multisim 10.4 Multisim 1 Multisim1 MultisimMultisim1 Multisim

## 11.2 OTL 11.4 OTL



Multisim

•

0

0

|    | 4            |
|----|--------------|
| 1  | <b>√</b>     |
| 2  | <b>√</b>     |
| 3  | $\checkmark$ |
| 4  | √            |
| 5  | √            |
| 6  | √            |
| 7  | √            |
| 8  | √            |
| 9  | √            |
| 10 | √            |
| 11 | √            |
| 12 | √            |

•

**»** « « **» »** « **»** Multisim **»**  $\langle\!\langle$ ] ( ) ] 10% 20% 10% 60%。

° [

|   |      | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       |
|---|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   | 4. 2 |          |          |          |          |          | <b>√</b> |          | <b>√</b> | <b>√</b> | √        | <b>√</b> | <b>√</b> |
| 4 | 4. 3 | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> | √        | <b>√</b> |
|   | 4. 4 | <b>√</b> | <b>√</b> | <b>√</b> | <b>√</b> | √        | <b>√</b> |
|   | 4. 5 | <b>√</b> |

10 Multisim

11 OTL

[ ]

**(1)** » 2020 4 2020 5 (1) E T M  $\checkmark$ ( ) 🗆 ( )  $\checkmark$ 3 52 44 8

«

», « », « », «

**»** 

|     | •                  | -          |
|-----|--------------------|------------|
|     |                    | -          |
|     |                    | -          |
| -   | . 0                | C P        |
| (E_ | _ ), E _ M _ , E _ | F          |
|     | ,                  | , DC _, A0 |
|     | , <u> </u>         | -          |
|     |                    | . B        |
|     |                    |            |
|     | . I                | -          |
| -   |                    |            |
|     | . <u>T</u> , _     |            |
|     | ,                  |            |
|     | ,                  | •          |
| `   |                    |            |
|     | •                  |            |
|     |                    |            |
|     | 0                  |            |
|     | 0                  |            |
|     |                    |            |
|     | , ,                |            |
|     |                    |            |

| `       |   |
|---------|---|
|         | 0 |
|         | • |
| 0       |   |
| , , , ) |   |
| `       |   |
|         |   |
| 0       | ` |
|         | 0 |
|         |   |
|         |   |

•

o

0

0

•

•

0

•

ľ l

1. 2. 3. 1 1 1 1. )

2. ( )

3. ( )<sub>°</sub>

•

o

 $\mathbf{Y}$ 

ľ

`

1. ( )

2.

3. (

4.

)。

° 1

0

•

0

•

1. (

2. . (

) 3. ( ) 1 1 ľ ( ) 1 2 « >> 2 3

|    | 3      |   |     | 0 |
|----|--------|---|-----|---|
| 6  | 2<br>4 |   |     | o |
| 7  | 2 5    |   | o   | o |
| 8  | 2 6    |   | 。 Y | 0 |
| 9  | 2<br>7 |   | o   | o |
| 10 | 2 8    |   |     | 0 |
| 11 | 2 9    |   | 0   | 0 |
| 12 | 3      | ` | `   |   |
| 13 | 3 2    |   |     |   |
| 14 | 3 3    |   |     |   |
| 15 | 3 4    |   |     |   |
| 16 | 3      |   |     |   |

|    | 5   |  |  |
|----|-----|--|--|
| 17 | 3 6 |  |  |
| 18 | 4   |  |  |
| 19 | 4 2 |  |  |
| 20 | 4 3 |  |  |

`

| 1 | 1 | 6  |   |  |   |  | 6  |
|---|---|----|---|--|---|--|----|
| 2 | 2 | 17 | 4 |  | 1 |  | 22 |
| 3 | 3 | 13 | 4 |  | 1 |  | 18 |
| 4 | 4 | 6  |   |  |   |  | 6  |
|   |   | 42 | 8 |  | 2 |  | 52 |

[ 1

20% 80%.

|   |   | 1   | 35 |     |
|---|---|-----|----|-----|
|   |   | 2   | 15 | 100 |
| ( | ) | . 3 | 25 | 100 |
|   |   | 4   | 25 |     |
|   |   | 1   | 25 |     |
|   |   | 2   | 15 | 100 |
| ( | ) | . 3 | 30 | 100 |
|   |   | 4   | 30 |     |

[

| `    | `           | ,           |      |
|------|-------------|-------------|------|
|      |             |             | `    |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
| 60%。 | 75%<br>60%。 | 90%<br>75%。 | 90%。 |
|      |             |             |      |

| ľ   | 1   | <b>'</b> | <u>'</u> | <b>-</b> |     |
|-----|-----|----------|----------|----------|-----|
|     |     |          |          |          |     |
|     | 5   | 10       | 10       | 10       | 35  |
| `   | 5   | 5        | 5        | 5        | 20  |
|     | 5   | 5        | 5        | 5        | 20  |
|     | 5   | 5        | 5        | 10       | 25  |
|     | 20  | 25       | 25       | 30       | 100 |
| [ ] | l . |          |          | ,        |     |

| 1 | 5  | 5  | 5  | 0  | 15  |
|---|----|----|----|----|-----|
| 2 | 5  | 10 | 10 | 10 | 35  |
| 3 | 5  | 5  | 10 | 5  | 25  |
| 4 | 5  | 5  | 10 | 5  | 25  |
|   | 20 | 25 | 35 | 20 | 100 |

 I
 J

 1.
 2011

 1.
 2007

 2.
 2000

 3.
 9
 2008

 4.
 2007

 5.
 1981

[ ]

1.

(

2.

T ( )
3.

( )

4. (

[ ]

0

 $\mathsf{T}$ 

r j

)。 1 **[** 1 Y -11 Y -0 1 Y -0 Y -6 Y -11 Y -5 1 1 1. (

2.

)

3.

( )。

0

0

0

T J

1.

(

)

2.

)。

٥

0

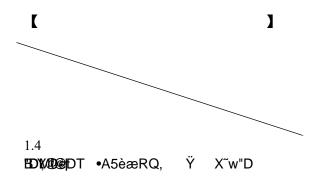
1 1 2 2

|   |   |  | o |
|---|---|--|---|
| 3 | 3 |  | 0 |
| 4 | 4 |  | • |
| 5 |   |  | o |

•

| 1 | 1 |  |  | 2 |  |  |  |  | 2 |
|---|---|--|--|---|--|--|--|--|---|
| 2 | 2 |  |  | 2 |  |  |  |  | 2 |
| 3 | 3 |  |  | 2 |  |  |  |  | 2 |
| 4 | 4 |  |  | 2 |  |  |  |  | 2 |
|   |   |  |  | 8 |  |  |  |  | 8 |

[ ]


\_\_\_\_

**«** «

- - -

C P. O (E\_ ), E \_ M , E F \_ \_ , DC \_, AC T . В . I . Ţ )

| <br> |   |
|------|---|
|      |   |
|      | o |
|      | · |
|      |   |
| 0    | 0 |
|      |   |
|      |   |
|      |   |
|      | 0 |
|      |   |
| •    | 0 |
| 0    |   |
|      |   |
|      |   |
|      | ` |
|      |   |
|      | 0 |



o

•

•

( 1. ); 2. ( ) 3. ( ) 1 1 > 1 1. ( ); 2.

( ) 3. 4. ( )。 1 1 

1. ); 2. ( ) 3. ( )。 1

[ ]

o e

o

0

0

•

-

0

 ${f V}$  .

•

| 1 | 4<br>4 |  |  |
|---|--------|--|--|

| 2  | 4 5     |   |   |   |
|----|---------|---|---|---|
| 3  | 5       |   | ō | • |
| 4  | 5 2     |   |   | o |
| 5  | 5 3     |   |   | 0 |
| 6  | 5<br>4  | , |   | o |
| 7  | 5<br>5  |   |   | o |
| 8  | 5<br>6  |   |   |   |
| 9  | 5<br>7  | , |   | o |
| 10 | 5<br>8  |   |   |   |
| 11 | 5<br>9  |   |   | o |
| 12 | 5<br>10 |   |   | o |
| 13 | 5<br>11 |   |   | • |
| 14 | 6<br>1  |   |   | o |
| 15 | 6       |   |   |   |

|    | 2      |   | ۰ |
|----|--------|---|---|
| 16 | 6 3    | , | o |
| 17 | 6<br>4 |   | o |
| 18 | 6<br>5 | ` | o |
| 19 | 6      |   | o |
| 20 | 6<br>7 |   | o |
| 21 | 6<br>8 |   | o |
| 22 | 6<br>9 |   | o |

`

| 4 | 4 | 4  |   |  |  |  |   |  | 4  |
|---|---|----|---|--|--|--|---|--|----|
| 5 | 5 | 21 | 4 |  |  |  | 1 |  | 26 |
| 6 | 6 | 17 | 4 |  |  |  | 1 |  | 22 |
|   |   | 42 | 8 |  |  |  | 2 |  | 52 |

`

[ ]

•

0 0

30% 70%.

|   |   | 1   | 35 |     |
|---|---|-----|----|-----|
|   |   | 2   | 30 | 100 |
| ( | ) | . 3 | 20 | 100 |
|   |   | 4   | 15 | •   |
|   |   | 1   | 30 |     |
|   |   | 2   | 30 | 100 |
| ( | ) | . 3 | 20 | 100 |
|   |   | 4   | 20 |     |

[ ]

|      | `           | ,           |      |
|------|-------------|-------------|------|
|      |             |             | ,    |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
|      |             |             |      |
| 60%。 | 75%<br>60%。 | 90%<br>75%。 | 90%。 |

|     | 5  | 5  | 5  | 10 | 25  |
|-----|----|----|----|----|-----|
| , , | 5  | 5  | 5  | 0  | 15  |
|     | 10 | 10 | 10 | 10 | 40  |
| ( ) | 0  | 0  | 0  | 0  | 0   |
|     | 5  | 5  | 5  | 5  | 20  |
|     | 25 | 25 | 25 | 25 | 100 |

[ ]

| 4 | 5  | 5  | 0  | 5  | 15  |
|---|----|----|----|----|-----|
| 5 | 10 | 10 | 10 | 10 | 40  |
| 6 | 15 | 10 | 10 | 10 | 45  |
|   | 30 | 25 | 20 | 25 | 100 |

•

1. ( ) 2011 **【** 

1. ( ) 2007

2. 2000

3. 9 2008

4. 2007

5. 1981

6. 2006

ľ

1.

( )

2.

3. ( ).

r j

0

r j

0

0

[ ]

0

ľ J

1. ( ) 2. ( ( 3. )。 1 1 1 1 

286

` ` `

(
 )
 (
 )
 (
 )

3. ( )

4. ( ).

0

1 1 1 1. ) ( 2. ( ) 3. )。 V ( 1 V 1

[ ]

ľ

 $\mathbf{V}$ 

| 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 |   |   |  |   |
|---------------------------------------------------------------------|---|---|--|---|
| 1     1       2     2       3     3       4     4                   |   |   |  |   |
| 1     1       2     2       3     3       4     4                   |   |   |  | , |
| 2 2 3                                                               | 1 | 1 |  |   |
| 3 3                                                                 |   |   |  |   |
| 3 3                                                                 | 2 | 2 |  |   |
| 4 4                                                                 |   |   |  | ۰ |
| 4 4                                                                 |   |   |  |   |
| 0                                                                   | 3 | 3 |  | 0 |
| 0                                                                   |   |   |  |   |
|                                                                     | 4 | 4 |  |   |
| 5                                                                   |   |   |  | 0 |
| 0                                                                   | 5 |   |  | o |

| 1 | 1 |  | 2 |  |  |  | 2 |
|---|---|--|---|--|--|--|---|
| 2 | 2 |  | 2 |  |  |  | 2 |
| 3 | 3 |  | 2 |  |  |  | 2 |
| 4 | 4 |  | 2 |  |  |  | 2 |
|   |   |  | 8 |  |  |  | 8 |

[ ]

\_\_\_\_

**«** 

K

2020 2 2020 2

•

|          |     |            |          | $\checkmark$ |
|----------|-----|------------|----------|--------------|
|          |     |            |          |              |
|          | ( ) | (          | ) 🗆      |              |
| <b>V</b> |     |            |          |              |
|          |     |            |          |              |
|          | 56  | 40         |          | 16           |
|          |     |            |          |              |
| <b>«</b> | »、《 | <b>〉、《</b> | »、 «     | >>,          |
|          | (   | <b>%、《</b> | <b>»</b> |              |

`

•

« », « » « », « » \_\_\_\_\_ 1 . P . T . A

| 1   |   | , |   | , / |   |   |
|-----|---|---|---|-----|---|---|
| 2   | • |   |   | ۰   |   | , |
| 3   | • |   | ` | `   | 0 | , |
| 4   | ° |   | > |     | ` |   |
| ľ   | 1 |   |   |     |   |   |
|     |   |   |   |     |   |   |
| 1.3 | • |   |   |     |   |   |
| 1.4 | 0 |   |   |     |   |   |

2.4

4.1

| 4.3  |   |  |  |
|------|---|--|--|
|      | 0 |  |  |
| 12.1 |   |  |  |
|      | 0 |  |  |

`

0

AC/AC DC/AC

。 《

», «
»

0

0

•

`

ľ

1 1 1 1. , ) 2. GTO、GTR、MOSFET、IGBT , , ) 1 1 ] 1 1 ] /

, , ,

GTO, GTR, MOSFET, IGBT

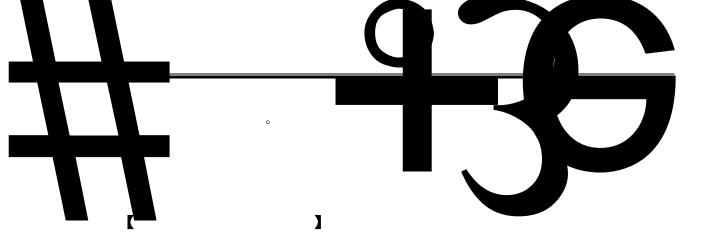
SOA . 6, 7, 11

MCT、SIT、SITH、IGCT

[ ]

1.

2.


( , )

3.

)。 【 】

2, 3, 4, 5. 7, 9, 10, 11, 12, 13. 14、15、16、17。 18, 19, 20, 22 1. 2. [ ]

1 1. ( **、**); 2. ( ) 3. 。( )。 1 1 1, 2. (2 ) 2 3, 4, 5. 1 ( )



1 1. ( ); 2. , ) )。 3. ( 1 1 1, 2. (1 ) 1 3。 1 1 PWM 1. PWM PWM (

**,** ); 2. 、PWM ( ] PWM PWM PWM ` 1 、 PWM 1. PWM 3, 4, , PWM 5、6. PWM 1 1, 2, 3 1,

2, 1 1 > 1, 2, 。3、 ( 1 1, 2, 3/4. PWM PWM SG3525 1 1 PWM

302

r j

0

0

SPWM

1, 2, 3, 4.

SPWM

o

[ ] 1

IGBT .

2

0

•

| 1 |     |     | , | `     |
|---|-----|-----|---|-------|
|   |     |     |   | 0     |
| 2 |     |     | ` |       |
| 3 |     |     | , | ,     |
| 4 |     |     |   | o     |
| 5 |     | `   |   | 0     |
| 6 |     |     |   |       |
| 6 | _   |     |   |       |
| 7 | -   |     |   | , , , |
| 8 | PWM | PWM |   | o     |
| 9 |     |     | ` | `     |

•

| 1 | 1 |     | 2  |    |  |     |     | 2  |
|---|---|-----|----|----|--|-----|-----|----|
| 2 | 2 |     | 7  |    |  |     | 1   | 8  |
| 3 | 3 |     | 10 | 6  |  | 1   | 1   | 16 |
| 4 | 4 |     | 3  | 4  |  | 1   | 1   | 7  |
| 5 | 5 | -   | 4  | 2  |  | 0.5 | 0.5 | 7  |
| 6 | 6 | -   | 2  |    |  |     | 1   | 3  |
| 7 | 7 | PWM | 4  | 4  |  | 1   |     | 8  |
|   |   |     | 32 | 16 |  | 3.5 | 4.5 | 56 |

`

[ ]

10% 10% 80% .

|   |   | 1   | 50 |     |
|---|---|-----|----|-----|
| ( | ) | 2   | 40 | 100 |
|   |   | . 3 | 10 |     |
|   |   | 1   | 30 |     |
| ( | ) | 2   | 20 | 100 |
|   |   | 3   | 20 |     |

|   |   | 4 | 30 |     |
|---|---|---|----|-----|
|   |   | 1 | 50 |     |
| ( | ) | 2 |    | 100 |
|   |   | 3 | 20 |     |
|   |   | 4 | 10 |     |

[ ]

| 20 | 5  | 0  | 5  | 30  |
|----|----|----|----|-----|
| 0  | 10 | 5  | 10 | 25  |
| 10 | 5  | 5  | 5  | 25  |
| 0  | 0  | 10 | 10 | 20  |
| 30 | 20 | 20 | 30 | 100 |

**C** 3

|     | 5  | 0  | 0  | 5   |
|-----|----|----|----|-----|
|     | 5  | 10 | 0  | 15  |
| -   | 30 | 20 | 5  | 55  |
| -   | 5  | 5  | 0  | 10  |
| PWM | 5  | 5  | 5  | 15  |
|     | 50 | 40 | 10 | 100 |

[ ]

5 2009 5

0

[ ]

\_\_\_\_

**«** 

2021 3 2021 4

| F E E             |
|-------------------|
| 01931480 01931490 |
|                   |
|                   |
|                   |
| ( ) ( ) $\square$ |
|                   |
| 119 ( 102 14 3)   |
|                   |
|                   |
|                   |

( 200 , )

**«** 

"Fundamentals of Electrical Engineering" is one of the professional fundamental courses for students majoring in Electrical Engineering and Its Automation. It mainly focuses on fundamental principles of power system analysis, high voltage and insulation, high voltage apparatus, power system protection, and power system operation. With this course, students should grasp the theoretical basis of electrical engineering, understand the restrictions that electrical equipment can tolerate, and establish the overall concepts of power system design, operation, control, protection, and decision—making. This course helps students to develop the capability of analyzing and solving engineering problems, and establish thoughts of engineering science. It plays a central role in training talents in Electrical Engineering and Its Automation.

( ) ( )

> " "

| ,   | <u> </u> |
|-----|----------|
|     |          |
| ,   |          |
|     |          |
| ` ` |          |
|     |          |
| , , | `        |
|     |          |
| ,   |          |
|     |          |
| `   |          |
|     |          |
|     | •        |
|     |          |
| `   |          |

ľ

|     | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| 1.3 |   |   |   |   |
| 1.4 |   |   |   |   |
| 3.1 |   |   |   |   |
| 4.1 |   |   |   |   |
| 7.2 |   |   |   |   |
| > . |   |   |   |   |

 $H \hspace{1cm} M \hspace{1cm} L$ 

1. 2. **«** »、《 >>, », « « », « 3. 7 119 102 14 3 3 0 42 , 6 8 , 3 4 60 (2 2 0 0 0 ) 1 1. [ ] 1) 2) 3) 1

] (8 6 1 0 ) 1 , ] 1, 2, 3. 1 1) / 2) 3) 4) 1 1) **«** »  $\langle\!\langle$  $\rangle\!\!\rangle$ ( ) 2) « **»** ,, ) 3) 4) / 1 ( )

•

8 (11 2 1 0 ) 2, 3, 4. 1, PQ ] 1) 2) Π 3) 4) PQ ] 1) 2) П 3) П PQ 4) 5) 6) **T** 0 ]

— PQ

(6 4 1 1 ) **I** 2, 3, 4.

1)

2)

° 1) « » « »

2)

2)

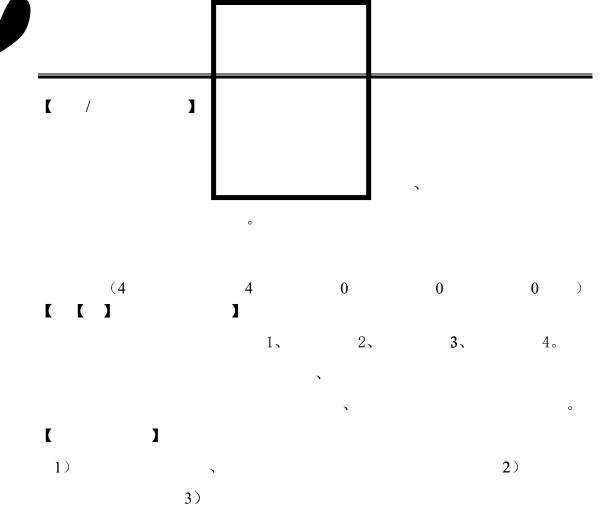
0

(4 4 0 1 , 0 )

(1 1, 3, 4.

|   | 1    |     |       |          |
|---|------|-----|-------|----------|
|   | 1)   |     | 2)    |          |
|   | 3)   |     | 4)    |          |
|   | 4)   | 5)  | 1/    |          |
|   |      | 5)  |       |          |
|   | 。6)  |     |       |          |
|   | 0    |     |       |          |
|   | 1    |     |       |          |
|   | 1)   |     |       |          |
|   | 2)   |     | o     |          |
| r | / 1  |     |       |          |
| • | /    |     |       |          |
|   |      |     |       |          |
|   |      |     | 0     |          |
|   |      |     |       |          |
|   |      |     |       |          |
|   | (4   | 4 0 | 0 ,   | 0 )      |
|   |      | 1   |       |          |
|   |      | 1,  | 3, 4. |          |
|   |      |     |       |          |
|   |      |     | 0     |          |
|   |      |     |       |          |
|   | 1)   | 0)  | O.    | <b>\</b> |
|   | 1)   | 2)  | 3)    | )        |
|   | 4) . |     |       |          |
|   | 1    |     |       |          |
| _ | _    |     |       |          |
|   |      | ,   |       |          |
|   |      | ·   |       |          |
|   |      |     |       | 0        |
|   | / 1  |     |       |          |
|   |      |     |       |          |
|   | 0    |     |       |          |

(10 10 0 0 , 0 ) 1 1, 3, 4. **(** 1) 1 2) ] ] (4 0 , 4 0 0 ) 1 1, 3, 4. **(** 1) 1 2) 3) 1 / ]


(16 0 14 2 0 1 1, 3, 4. 

] 4 (4 0 0 , 0 ) ] 2, 3, 1, 4. [ ] 1) 2) 3) 4) 5) 1 **(** / ] (2 2 0 0 0 ) 1 1, 2, 3, 4. 1 1) 2) 3) 4) 5)

319

]

( 8.14 ) 1 / (14 12 2 0 ) 0 1 1, 2, 3, 4. 1 1) 2) 3) 4) ( ) 5) 1 m"



[ 1 1) 2) 3) 4) 5) ] 1) 2 2) 3 +1 3) 3 +1 4) 2 +1 5) 1 1 6) 7) **(** / ] (2 2 0 0 ) 0

322

1

1, 2, 3, 4.

0

[ ] 1) 2) 3)

1) 1 1 ° 2) 1 °

[ / ]

1, , , , (

) ] 3,

1

4、

|    | <br> | <br> |
|----|------|------|
| 14 |      |      |
| 15 |      |      |
| 16 |      |      |

| 1  | 1  | 2  |   |  |  |   | 2  |
|----|----|----|---|--|--|---|----|
| 2  | 2  | 6  | 1 |  |  | 1 | 8  |
| 3  | 3  | 8  | 2 |  |  | 1 | 11 |
| 4  | 4  | 4  | 2 |  |  | 1 | 7  |
| 5  | 5  | 4  | 1 |  |  |   | 5  |
| 6  | 6  | 4  |   |  |  |   | 4  |
| 7  | 7  | 10 |   |  |  |   | 10 |
| 8  | 8  | 4  |   |  |  |   | 4  |
| 9  | 9  | 14 | 2 |  |  |   | 16 |
| 10 | 10 | 6  |   |  |  |   | 6  |
| 11 | 11 | 4  |   |  |  |   | 4  |
| 12 | 12 | 2  |   |  |  |   | 2  |
| 13 | 13 | 12 | 2 |  |  |   | 14 |
| 14 | 14 | 4  |   |  |  |   | 4  |
| 15 | 15 | 16 | 4 |  |  |   | 20 |

| 16 | 16 |   | 2  |    |  |  |   | 2   |
|----|----|---|----|----|--|--|---|-----|
|    |    | I | 10 | 14 |  |  | 3 | 119 |

[ ]

0 0

30%

40%。

|   |     | 1    | 40 |     |     |    |     |
|---|-----|------|----|-----|-----|----|-----|
|   |     | 2    | 30 | 100 |     |    |     |
| ( | )   | 3 20 | 20 | 100 |     |    |     |
|   |     | 4    | 10 |     |     |    |     |
|   |     |      |    | 2   | 1   | 55 |     |
|   |     |      |    |     | 2   | 45 | 100 |
| ( | )   | 3    | 0  | 100 |     |    |     |
|   |     | 4    | 0  |     |     |    |     |
|   |     | 1    | 55 |     |     |    |     |
|   | ( ) | 2    | 45 | 100 |     |    |     |
| ( |     | ) 3  |    | 0   | 100 |    |     |
|   |     | 4    | 0  |     |     |    |     |

|   | , | ,  |    |    |    | `  |
|---|---|----|----|----|----|----|
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
| [ | 1 | I  |    |    | I  |    |
|   |   |    |    |    |    |    |
|   |   |    |    |    |    |    |
|   |   | 15 | 10 | 5  | 0  | 30 |
|   |   | 20 | 5  | 0  | 0  | 25 |
|   |   | 0  | 5  | 10 | 10 | 25 |
|   |   | 5  |    |    |    | 20 |
|   |   | υ  | 10 | 5  | 0  | 20 |

| r 1 |      |  |   |
|-----|------|--|---|
| «   | (1)》 |  | 0 |
|     |      |  |   |

| 10 | 0  | 0 | 0 | 10  |
|----|----|---|---|-----|
| 10 | 10 | 0 | 0 | 20  |
| 10 | 15 | 0 | 0 | 25  |
| 10 | 10 | 0 | 0 | 20  |
| 10 | 15 | 0 | 0 | 25  |
| 50 | 50 | 0 | 0 | 100 |

| 20 | 20 | 0 | 0 | 40  |
|----|----|---|---|-----|
| 15 | 20 | 0 | 0 | 35  |
| 15 | 10 | 0 | 0 | 25  |
| 50 | 50 | 0 | 0 | 100 |

| <b>(</b> | 2)》 |    |   |   | 0   |
|----------|-----|----|---|---|-----|
|          |     |    |   |   |     |
|          | 20  | 15 | 0 | 0 | 35  |
|          | 15  | 25 | 0 | 0 | 40  |
|          | 15  | 10 | 0 | 0 | 25  |
|          | 50  | 50 | 0 | 0 | 100 |

| 10 | 0 | 0 | 0 | 10 |
|----|---|---|---|----|

| 5  | 5  | 0 | 0 | 10  |
|----|----|---|---|-----|
| 5  | 0  | 0 | 0 | 5   |
| 10 | 10 | 0 | 0 | 20  |
| 5  | 5  | 0 | 0 | 10  |
| 10 | 15 | 0 | 0 | 25  |
| 0  | 0  | 0 | 0 | 0   |
| 50 | 50 | 0 | 0 | 100 |

( ) 2008 1 [ ] ( ) 2004 1, ( ). 2, , 2003 3, ( ). : 2009 4, ( ) 2010

o

0

0

,

| o |   |
|---|---|
|   | o |
|   |   |
|   |   |
| o | ۰ |

|  |   | , |   |
|--|---|---|---|
|  |   |   |   |
|  |   |   |   |
|  |   |   |   |
|  |   |   |   |
|  | 0 |   |   |
|  |   |   | ō |
|  |   |   |   |

|      | 1 | 2 | 3 |
|------|---|---|---|
| 1.2  |   |   |   |
| 2.1  |   |   |   |
| 2.2  |   |   |   |
| 12.2 |   |   |   |

1.

2.

0

3.

0

5.

0

1

**[** ]

1. ;

2. ;

3. **T** 3

•

2

**[** ]

1.

2.

3. ( )

r 1

o

° 1

•

1 1, 2 3 1. 1); ( 2. ( 1) 3. ( 2 3)。 1 [ ] () () 1

336

 1
 2

 1.
 ( 1)

 2.
 (
 1)

 3.
 (
 1).

4. ( 2)<sub>0</sub>

•

° ,

> **[** ]

1); 1. 。( 2. ( 2); 3. Agent ( 3)。 1 1 I III > ] 2 3 1, 。( 1) 1. 2. ( 2)

1,

2

3

3.

( 3)<sub>°</sub>

>

° )

>

1

[

1 1 7 8 1 3 1. ( 1); 2. 1); ( ( 3. 3)。 ľ 1

340

| 5  | 4<br>1 |   | o |
|----|--------|---|---|
| 6  | 4<br>2 | 0 | o |
| 7  | 5 2    |   |   |
| 8  | 6      |   | 0 |
| 9  | 6 5    |   | o |
| 10 | 7<br>1 |   | o |
| 11 | 8<br>2 |   | 0 |
| 12 | 8<br>4 |   |   |

`

| 1 | 1 | 4 |  |  |  | 4 |
|---|---|---|--|--|--|---|
| 2 | 2 | 6 |  |  |  | 6 |
| 3 | 3 | 6 |  |  |  | 8 |

| 4 | 4  | 6  |  |  |   |  | 6  |
|---|----|----|--|--|---|--|----|
| 5 | 5  | 6  |  |  | 2 |  | 6  |
| 6 | 6  | 2  |  |  |   |  | 2  |
| 6 | 9  | 6  |  |  |   |  | 6  |
| 7 | 10 | 8  |  |  | 2 |  | 12 |
|   |    | 44 |  |  | 4 |  | 48 |

[ ]

80%.

|   | 1 | 80 |     |
|---|---|----|-----|
| ) | 2 | 20 | 100 |
| , | 3 | 0  |     |
|   | 1 | 50 |     |
| ) | 2 | 30 | 100 |
| , | 3 | 20 |     |

[ ]

|   | , | ` | `     |
|---|---|---|-------|
| ` | ` |   | ` ` ` |
|   | 0 | 0 |       |

| ľ J    | 1  |    | l  |     |
|--------|----|----|----|-----|
|        |    |    |    |     |
|        |    |    |    |     |
|        | 30 | 10 | 0  | 40  |
| ,      | 0  | 10 | 20 | 30  |
|        | 20 | 10 | 0  | 30  |
|        | 50 | 30 | 20 | 100 |
|        | 1  |    |    |     |
|        |    |    |    |     |
| 1      | 8  | 0  |    | 8   |
| 2      | 12 |    |    | 12  |
| 3      | 10 | 5  |    | 15  |
| 4      | 10 | 5  |    | 15  |
| 5      | 10 | 5  |    | 15  |
| 6      | 10 | 5  |    | 15  |
| 7<br>8 | 20 | 0  |    | 20  |
|        | 80 | 20 |    | 100 |

**1** 1. **»** 2019 2. **»** 1 [1] , 《 **»** , 2003 [2] 2013 [3] 》, 2001 2003 [4] ), , 2011 [5] , 2015 [6] [7] 2005 [8] 2012 R W. H . C [9] J \_ H. M \_ A P\_, 2006 \_ , J \_ & B [10] M \_ J. A \_ , A \_ U P , 2003 <u>,</u> C S . M , 34(2014):1417-1426 W.I [11] R [12] M.D R , P. M . R , J M A A 422 (2015): 37-55

\_\_\_\_\_

**«** »

2020 4 2020 5

`

| Operation | ns Research | l            |     |    |  |   |
|-----------|-------------|--------------|-----|----|--|---|
| 01920015  | 192001510   |              |     |    |  |   |
|           |             |              |     |    |  |   |
|           |             |              |     |    |  |   |
|           |             | $\checkmark$ |     |    |  |   |
|           |             |              |     |    |  |   |
|           |             |              |     |    |  |   |
| 2         |             | 32           | 2 ( | 32 |  | ) |
|           |             |              |     |    |  |   |
|           |             |              | `   |    |  |   |
|           |             |              |     |    |  |   |

**«** »

, , ,

•

[ ( )]

Operations Research is a professional basic platform course for electrical engineering and automation specialty. On the basis of Advanced Mathematics, Linear Algebra and other related courses, the basic models and solving methods of various optimization problems are discussed in detail in this course, so that students can use these models and solving methods to analyze, explain and calculate various optimization problems, especially those in electrical engineering. The course provides necessary theoretical basis for learning follow-up professional courses or further studying on optimization field problems. Through the study of this course, students can improve their dialectical thinking ability and engineering ethics, establish the scientific viewpoint of linking theory with practice, and get the ability to analyze and solve problems.

[ ]

·

| 0 |  |
|---|--|
|   |  |

| 0 |     |
|---|-----|
|   | , , |
|   |     |
|   | ·   |
| 0 | 0   |

r 1

|        | 1 | 2 | 3 |
|--------|---|---|---|
| 1.     |   |   |   |
| . 2.1  |   |   |   |
| 。 2.2  |   |   |   |
| 。 11.1 |   |   |   |
| 。 11.2 |   |   |   |

•

1.

2.

» « « **»** 3. 6. 1 1 1 1 1 1, Α. В. C. D.

349

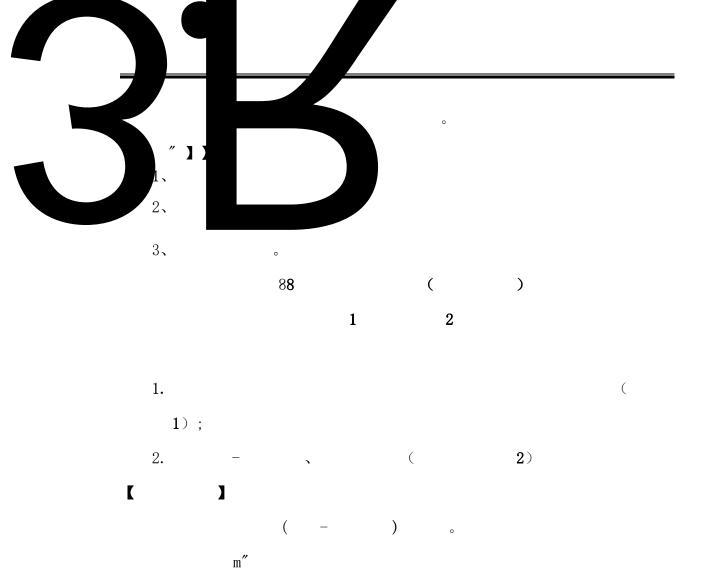
2,

Α. В. C. D. 3, Α. В. 2 1 2 1 0 [ ] ľ 1 1, Α. В. 2, 3, 4,

350

5,

Α.


В.

C.

|    | D <b>.</b> |   |   |   |   |     |     |   |
|----|------------|---|---|---|---|-----|-----|---|
|    | Е.         |   |   |   |   |     |     |   |
|    | F.         |   |   |   |   |     |     |   |
| 6  |            |   |   |   |   |     |     |   |
| 7  | M          |   |   |   |   |     |     |   |
| 8  |            |   |   |   |   |     |     |   |
|    |            | 3 |   |   |   |     |     |   |
|    |            |   | 1 |   | 2 |     | 3   |   |
|    |            |   | 1 |   | 2 |     | J   |   |
| 1  |            |   | ( |   |   | • ` |     |   |
| 1. |            |   | ( |   |   | 1); |     |   |
| 2. |            |   | ( |   | 4 | 2)  |     |   |
| 3. |            |   |   |   |   |     |     |   |
|    |            |   |   | ( |   | 3   | 3)。 |   |
|    | 1          |   |   |   |   |     |     |   |
|    |            |   |   | 0 |   |     |     |   |
|    |            |   |   |   |   |     |     | 0 |
|    | 1          |   |   |   |   |     |     |   |
| 1, |            |   |   |   |   |     |     |   |
| 2, |            |   |   |   |   |     |     |   |
| 3, |            |   |   |   |   |     |     |   |
| 4, |            |   |   |   |   |     |     |   |
| 5, |            |   |   |   |   |     |     |   |
| 6, |            |   |   |   |   |     |     |   |
| 7、 |            |   |   |   |   |     |     |   |
|    |            |   | 6 |   |   |     |     |   |
|    |            |   | 1 |   | 2 |     | 3   |   |
|    |            |   |   |   |   |     |     |   |

1. ( 1); ( 2. 2) 3. ( 3) 1 [ ] 1, Α. В. 2, Α. В. 3, Α. В. 7 ( ) 2 1 ( 1. 1); ( 2. 1) 3. 2)。 ( 1

352



4. ( 3)。 1 1 1, 2, 3, 4, 11 1 2 1. ( 1); 2. ( 2) 4. ( 3)。 1 [ 1 1, 2, 3, 4, 5,

15 1 2 ( 1); 1. 2. ( 2) 4. 3)。 [ 1 1 1, Α. В. С. 2, 3, 16 1 2 1); ( 1. ( 2. 2) 4. ( 3)。 1

355

1,

2,

3,

•

|   |    |   | , |
|---|----|---|---|
|   |    |   |   |
| 1 |    |   | 0 |
| 2 | 2  |   | • |
| 3 | 3  |   |   |
| 4 | 6  |   | ۰ |
| 5 | 7  |   |   |
| 6 | 8  |   | 0 |
| 7 | 9  |   | ° |
| 8 | 11 | 0 | o |

| 80 | 0%。 |     | 0  |     |
|----|-----|-----|----|-----|
|    |     |     |    |     |
|    |     | 1   | 50 |     |
| (  | )   | 2   | 40 | 100 |
|    |     | . 3 | 10 |     |
|    |     | 1   |    |     |
| (  | )   | 2   |    | 100 |
|    |     | . 3 | 12 |     |

| ľ | 1 |    |    |    |    |
|---|---|----|----|----|----|
|   |   |    |    |    |    |
|   | , | ,  |    | `  |    |
|   |   |    |    |    |    |
| ľ | ] |    |    |    |    |
|   |   |    |    |    |    |
|   |   | 35 | 35 | 0  | 70 |
|   |   | 10 | 10 | 10 | 30 |

| 45 | 45 | 10 | 100 |
|----|----|----|-----|

| 7  |  | 1 |
|----|--|---|
| L. |  |   |

|    |   | •   |    |    |     |
|----|---|-----|----|----|-----|
|    |   |     |    |    |     |
|    |   |     |    |    |     |
| 2  |   | 20  | 10 | 0  | 30  |
| 3  |   | 10  | 0  | 5  | 15  |
| 6  |   | 10  | 0  | 0  | 10  |
| 7  | ( | 5   | 5  |    | 10  |
| )  |   |     |    |    |     |
| 8  | ( |     |    | 0  |     |
| )  |   |     |    |    |     |
| 9  |   |     |    |    |     |
| 11 |   | 4-5 | 4- | _  | 2.5 |
| 15 |   | 15  | 15 | 5  | 35  |
| 16 |   |     |    |    |     |
|    |   | 70  | 20 | 10 | 100 |

1, 《 》

2012

21

K

[ ]

1, 2 « »

2013

2, . . . . .

2015.

3, Wayne L. Winston. Operation Research: Applications and Algorithms 4th Edition. 2003, Duxbury Press.

2020 3 2020 4

College Physics
sd01921330

 $\checkmark$ ) ) 🗆 (  $\checkmark$ 4 64 ( 64 ) (

•

r 1

0

\_P \_ \_ \_ , . I

. C

T \_ \_ , \_

,

1 1: 2 3 1 2 1 3 1.1 1.2 2.1 2.2

363

7.1

1.

2.

« », « »

3.

7.

•

(2 ) [ ] 3

```
(1
     1 )
]
]
[
      1
1.
2.
[ /
       1
(1
     1
         )
      ]
[
     1.
 2.
]
      1
( /
(2
【
      2
          )
      1
1.
2.
F
     ]
[
     ]
( )
       1
2
ľ
     1
(1
    1 )
```

```
]
1.
2.
3.
T
     1
1.
2.
ľ
      1
[ /
      ]
(2
【
      2 )
      1
1.
2.
]
]
1
 /
    1
 (1
          )
     ]
]
     1
[ /
       1
3
[
     1
(2
【
     2
          )
     ]
1.
2.
1
```

1 / 1 (1 1 ) 1 1 ] ] / 1 ) (1 ] 1 ] ] / (2 2 ) [ 1 1. 2. 3 4 ] ] **(** / 1 4 ]

```
(2
【
      2 )
      1.
 2.
 3.
     1
1
( /
     1
- (1
      1
          )
ľ
      ]
1.
2.
[
     ]
[ /
      ]
(1
      1
           )
1
1.
2.
 3.
[
     1
]
( /
       1
5
[
     ]
(2
     2 )
[
     ]
```

```
1.
 2.
 3.
 4.
      1
]
1
  (1
      1
            )
1
1
1
]
 /
(2
       2
            )
       ]
1.
2.
•
      1
1
1
6
      (2
                2
                   )
      1
1
>
      ]
```

1 1 ] 1 1 ] (4 7 4 ) [ [ 1 1 1. 2. **T** 1 1. ) 2. ( ) ] [ ] (4 8 ) 4 [ [ 1 1 1. 2.

```
(
        )
                     (
                      )
T /
         1
           1
                   ] 4
9
        (4
        1
1
[
1.
  2.
        1
1
1
,1\'B00@EÏuBp
               (4
                       4
                          )
[
[
        1
        _
1.
```

```
] 1.
2.
3.
1
]
1
12
           (4
                           4
                                )
           1
1
[
[
1.
2.
1
]
[
               1
13
          (3
                         )
                     3
           ]
]
[
[
1.
2.
           1
]
```

1 **(** / (3 14 3 ) 1 **T** 1. 2. 1 Н 1 0 ] 0 15 (4 4 ) **T** 1 1 1. 2. 3. 1 1 [ 1 (2 16 2 ) ] \_ 1. 2. ]

|     | 7  |     |   |
|-----|----|-----|---|
| 8   |    |     |   |
|     |    | 0   |   |
|     |    |     | ۰ |
|     | 8  |     |   |
| 9   |    |     | 0 |
|     |    | o.  |   |
|     | 9  |     |   |
| 1.0 |    |     |   |
| 10  |    | 0   |   |
|     |    | o o | o |
|     | 10 |     |   |
|     | 10 | `   |   |
| 11  |    | ,   | 0 |
|     |    |     |   |
|     |    |     |   |
|     | 11 |     |   |
| 12  |    |     |   |
|     |    |     | 0 |
|     | 12 |     |   |
| 1.2 |    |     |   |
| 13  |    |     | 0 |
|     |    |     |   |
|     | 12 |     |   |
|     | 13 |     |   |
| 14  |    |     |   |
|     |    |     |   |
|     |    |     | o |
|     | 14 |     |   |
| 15  |    |     |   |
| 13  |    |     |   |
|     |    |     | o |
|     | 15 |     |   |
|     |    |     |   |
|     |    |     |   |
| 16  |    |     | 0 |
|     |    |     |   |
|     |    | 0   |   |
|     |    |     | ۰ |
|     |    |     | - |
|     | 16 |     |   |
|     |    |     |   |
| 17  |    |     |   |
|     |    |     |   |
|     |    |     | 0 |
|     |    |     | ° |

`

| , | , | ` |
|---|---|---|
|   |   |   |
|   |   |   |

| 10 | 0 | 0 | 10 |
|----|---|---|----|
|    |   |   |    |
| 5  | 0 | 5 | 10 |
|    |   |   |    |
| 15 | 0 | 5 | 20 |

|   | 2  | 0  | 0 | 2   |
|---|----|----|---|-----|
| 1 | 20 | 23 | 0 | 43  |
| 2 | 25 | 30 | 0 | 55  |
|   | 47 | 53 | 0 | 100 |

( ) 2009 2 3

1 [1] ( ) **»** 2009.3 ( 3 ) » [2] 2011 7 3 . [3] **«** » 2006 3 . [4] **»** 2007 3

**«** 

2017. 4. 20 2017. 5. 10

Ι Е C 01020 030  $\square \checkmark$  $\Box$   $\checkmark$  $\Box$   $\checkmark$ 32 28 1

Physics is an experimental science, the teachings of physics experiment and physics theory have the same important status, and

they have both profound internal connection and cooperation, but also have their respective tasks and functions. Based on the physics knowledge leaned in middle school, this course of physics experiment should train the college students how to learn experimental principle, error theory and methods of learning physics experiment gradually. Strict training of experimental skills, and a preliminary understanding of main process of scientific experiments and basic methods lay a good experimental foundation for future learning and work.

[ ]

0

**1** 

1

2

(1)

(2)

(3)

(4)

(5)

0

4.3

\*\*\*

8.2

\*\*\*

\* \*\* \*\*

( ) (4 )

•

[ 1 1 (4 ) ] 1 ] (4 ) ] 1 ] (4 ) 1 ] 1 (4 ) 1

```
]
]
                    (4
                       )
]
                                CCD
]
      ] CCD
(4
                      )
1
1
]
             (4
                  )
1
]
1
              (4
                 )
]
]
]
1
```

| 1 | 2 | 3 |  |
|---|---|---|--|
| X | X | X |  |
| X | X | X |  |
| X | X | X |  |
| X | X | X |  |
| X | X | X |  |
| X | X | X |  |
| X | X | X |  |
| X |   | X |  |
| X | X | X |  |
| X | X | X |  |

`

[ ]

+ + +

[ ]

o

:

40 . . .

| ≤20 | €30 | ≤35 | ≤40 |
|-----|-----|-----|-----|

30 .

|                   |     | `          |          |     |              |
|-------------------|-----|------------|----------|-----|--------------|
|                   |     |            |          |     |              |
| ≤10               | ≤15 |            | €20      |     | ≤30          |
| 30 .              | 1   | `          | . (      | )   |              |
|                   |     |            |          |     |              |
|                   |     |            |          |     |              |
|                   |     |            |          | `   | 0            |
|                   |     |            |          |     |              |
| ( ,               |     |            |          |     |              |
| )                 |     |            |          |     | •            |
| €5                | ≤10 |            | ≤20      |     | €30          |
| 5                 | 6 . |            |          |     |              |
|                   |     |            |          |     |              |
|                   | 0   |            |          |     |              |
| •                 |     |            |          |     |              |
| [ ]               |     |            |          | (   | , )          |
|                   | . « |            | <b>»</b> | . : | , 2014 1     |
|                   |     |            |          |     |              |
| <b>T</b> 3-5      |     |            | , ,      |     |              |
| 1 . «             |     | » .        | :        |     | , 2001       |
| 0 //              |     |            | » .      | :   | , 2001       |
| 2 . 《             |     |            |          |     |              |
|                   |     | ».         | :        |     | 1996         |
| 2 . « 3 . « 4 . « |     | » .<br>» . | :        |     | 1996<br>1993 |

**« 》** 2017 4 2017 / 5  $\checkmark$ ) ) (  $\checkmark$ 1 16 0 0 16

.T \_ \_ \_ , \_ \_ .T \_ \_ \_ . T \_ \_ \_ . T \_ \_ \_ .

.

|   | · · · · · |
|---|-----------|
| o |           |
|   | Ç         |
|   |           |
|   | •         |
| 0 |           |

[ ]

|       | 1 | 2 | 3 |
|-------|---|---|---|
| 6.2   |   |   |   |
| , , , |   |   |   |
| ۰     |   |   |   |
| 7.2   |   |   |   |
| •     |   |   |   |
| 8.1   |   |   |   |
| 0     |   |   |   |

•

0

•

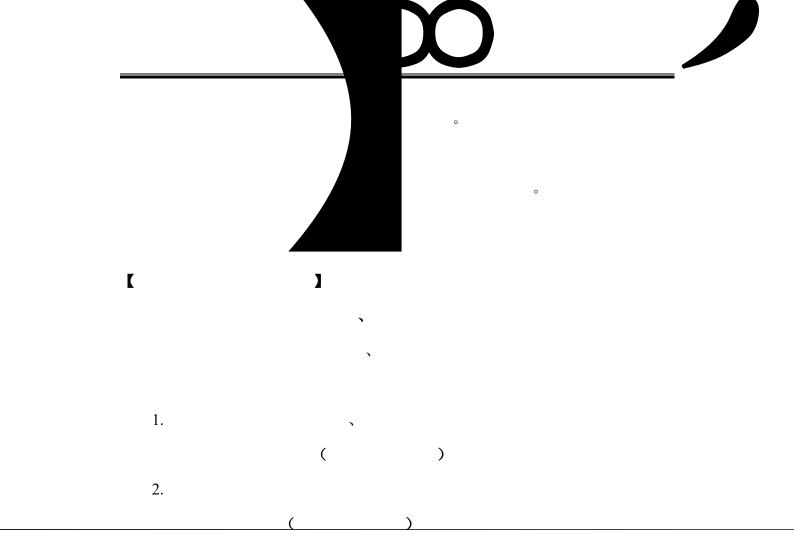
•

>

1. , (

。( )。 [ ]

0


1 ( ) 1. ( 2. ) 3. ( )。 **T** 1 1 1 1. " ( ); 2.

( ), ( ) 3. )。 1 1 >

ľ J

1 "

" " " " 1 ( ) 1. 2. ( ) 3. ( )。 1 1



o

`

o

r 1

1.

2.

(

)。

ľ J

u n

0

•

0

٥

r J

1. ; 2.

3.

#ë,´。
4.

•

| 8 | 8 | 2  |  |  |  | 2  |
|---|---|----|--|--|--|----|
|   |   | 16 |  |  |  | 16 |

`

[ ]

。 20%

80%。

|   | 1 | 29 |     |
|---|---|----|-----|
| ) | 2 | 28 | 100 |
| , | 3 | 43 |     |
|   | 1 | 45 |     |
| ) | 2 | 35 | 100 |
| , | 3 | 20 |     |

[ ]

| 5 . | 3-4 。 | 1-2 。 | 0 |
|-----|-------|-------|---|
|     |       |       |   |
|     |       |       | ` |
| o   | 0     | o     | 0 |
|     |       |       |   |
|     |       |       |   |

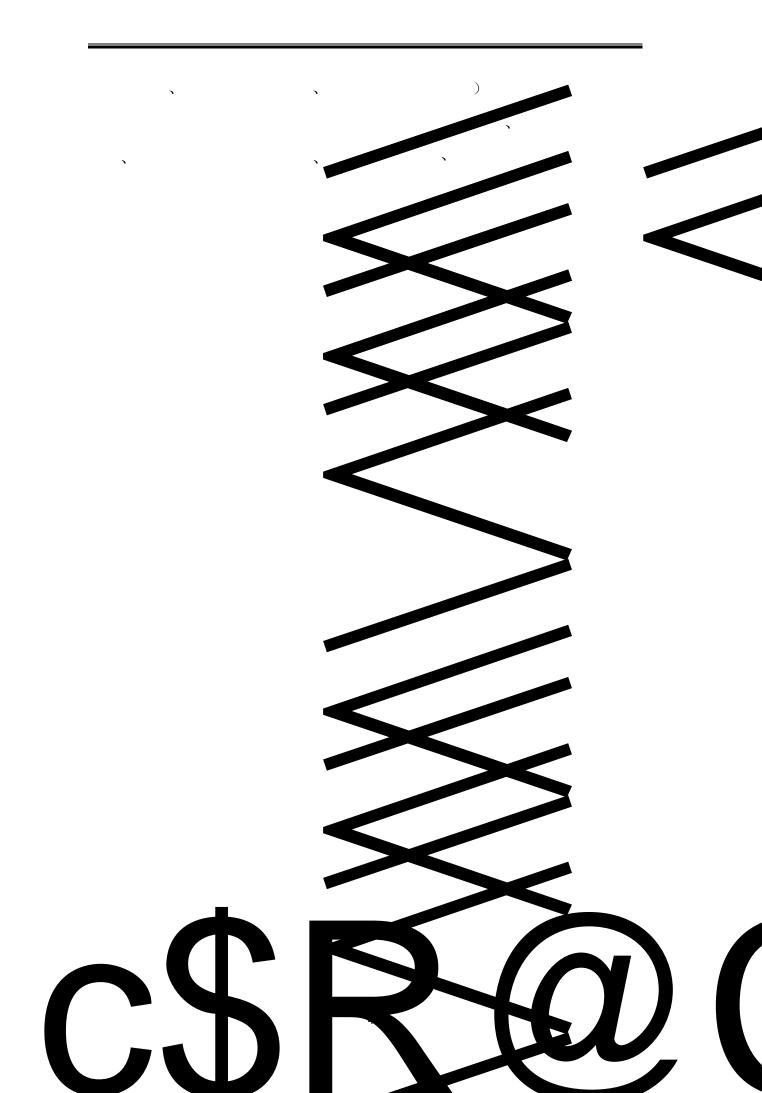
[ ]

| 15 | 20 | 25 | 60  |
|----|----|----|-----|
| 20 | 20 | 0  | 40  |
| 35 | 40 | 25 | 100 |

| <u> </u> |     |    |     |      |
|----------|-----|----|-----|------|
|          |     |    |     |      |
|          |     |    |     |      |
| 1        | 4   | 4  | 4.5 | 12.5 |
| 2        | 3   | 4  | 5.5 | 12.5 |
| 3        | 4   | 4  | 4.5 | 12.5 |
| 4        | 4.5 | 4  | 4   | 12.5 |
| 5        | 4   | 4  | 4.5 | 12.5 |
| 6        | 3.5 | 4  | 5   | 12.5 |
| 7        | 6   | 0  | 6.5 | 12.5 |
| 8        | 0   | 4  | 8.5 | 12.5 |
|          | 29  | 28 | 43  | 100  |

[ ]

2012


K

-

5. W C. B , G G. C , J M. W . , O 18, 2016

**《 》** 2017 2017 5 4  $\checkmark$ ( ) [  $\checkmark$ 32 32 1  $\langle\!\langle$ **»** 

>



| Г   | T |       |
|-----|---|-------|
|     |   | 0     |
|     |   |       |
|     |   |       |
|     |   | ` ` ` |
|     |   |       |
|     | 0 |       |
|     |   |       |
|     |   |       |
| - 1 |   | 0     |

[ ]

|    |     |   |   | 6 | 7 | 8 |
|----|-----|---|---|---|---|---|
| 6. |     |   |   |   |   |   |
|    | ` ` | • |   |   |   |   |
| 7. |     |   |   |   |   |   |
|    | `   |   | 0 |   |   |   |
| 8. |     | • |   |   |   |   |
|    | 0   |   |   |   |   |   |

o

° "

0

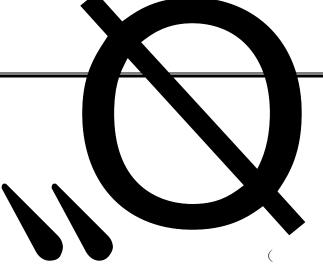
1 ( 1. ) 。 2. ( **T** 1 [ ] 1, 2、 3、 1 1. );

404

(

) 。

2.


1 > [ ] 1, 2, 3、 1 ) 1. 2. ( ) 。 ľ 1 [ ] 1, 2, 3、 1

**(** ) 1) 2) > **T** 1 > 1. ( ) ) 。 2. [ ] [ ] 1, 2, [ ] 1 ); ( 1. ) ( 2. ( ) 。 3.

[ ] [ ] 1, 2, 3, 4、 1 **[** ] ( ); 1. 2. ( ) 3. ( ) 。 [ ] **T** 1

1, 2, 3、 1 ( ); 1. ( ) 2. ) 。 3. ( 1 1, 2、 3、 4、 1. ( ); 2. ( )

3. ( ) 。 [ ] [ ] 1, 2, 3、 4、 5、 ); ( 1. ) 2. ( 3. ( ) 。 1 0 [ ] 1, 2、 3、 4、 5、



1.

);

2. ( )

3. (

) 。

1 1

[ ]

1,

2、

3、

4、

0

[ ]

1,

2,

3、

4、

5, . .

`

| 1 | 1 |   | o |
|---|---|---|---|
| 2 | 2 | • | 0 |
| 3 | 3 | o |   |
| 4 | 4 | o | 0 |
| 5 | 5 | o | • |

|    | I  | <u> </u> |     | 1 |
|----|----|----------|-----|---|
| 6  | 6  | ,        | , , | o |
| 7  | 7  |          |     | o |
| 8  | 8  |          | o   | ۰ |
| 9  | 9  |          | 0   | o |
| 10 | 10 |          | o   | 0 |
| 11 | 11 |          | o   | o |
| 12 |    | ,        | 0   | • |

`

| 1 | 1 | 1.5 |  |  |  |  | 0.5 | 2 |
|---|---|-----|--|--|--|--|-----|---|
|   |   |     |  |  |  |  |     |   |

| 2  | 2  | 2 |  |  |   | 1 | 3  |
|----|----|---|--|--|---|---|----|
|    |    |   |  |  |   |   | _  |
| 3  | 3  | 2 |  |  | 1 |   | 3  |
| 4  | 4  | 2 |  |  |   | 1 | 3  |
| 5  | 5  | 3 |  |  |   | 1 | 4  |
| 6  | 6  | 5 |  |  |   |   | 5  |
| 7  | 7  | 3 |  |  |   |   | 3  |
| 8  | 8  | 3 |  |  |   |   | 3  |
| 9  | 9  | 2 |  |  |   |   | 2  |
| 10 | 10 | 2 |  |  |   |   | 2  |
| 11 | 11 | 2 |  |  |   |   | 2  |
|    |    |   |  |  |   |   | 32 |

**t** 1

•

•

20% 80%.

|   | 6 | 35 |     |
|---|---|----|-----|
| ) | 7 | 35 | 100 |
|   | 8 | 30 |     |
|   | 6 | 50 | 100 |

| ( | ) | 7 | 50 |
|---|---|---|----|
|   |   | 8 | 0  |

[ ]

[ ]

| 5  | 5  | 0  | 10  |
|----|----|----|-----|
| 5  | 5  | 0  | 10  |
| 30 | 30 | 20 | 80  |
| 40 | 40 | 20 | 100 |

**t** 3

|   | 5 | 5 | 0 | 10 |
|---|---|---|---|----|
| 2 | 5 | 5 | 0 | 10 |

| 3             |    |    |    |     |  |
|---------------|----|----|----|-----|--|
| 4             | 10 | 10 | 10 | 30  |  |
| 5             |    |    |    |     |  |
| 6<br>7        | 10 | 5  | 10 | 25  |  |
| 8             |    |    |    |     |  |
| 9<br>10<br>11 | 10 | 15 | 0  | 25  |  |
|               | 40 | 40 | 20 | 100 |  |

[ ] K 《

>> ) **t** 1

**«** 

**`** « »

)

` [ ]

o

r 3

2.

3.


4.

5.

[ ]

|     | 1      | 2  | 3  | 4  | 5   |
|-----|--------|----|----|----|-----|
| 1.1 | *      | ** | ** | ** |     |
| 4.2 | <br>** | ** | ** | ** | *** |

`



§

8

§

4ô.

3) v

ш″



|   |   | §   |   |   | ( |   |  |
|---|---|-----|---|---|---|---|--|
|   |   | § , |   |   |   | ) |  |
|   |   | `   |   |   |   |   |  |
|   |   | §   | ( | ) |   |   |  |
|   |   |     |   |   |   |   |  |
|   |   |     |   |   |   |   |  |
| • | • |     |   |   |   |   |  |
|   |   |     |   |   |   |   |  |
|   |   |     |   |   |   |   |  |
|   |   |     |   |   |   |   |  |

2 3 5 1 4 1.1 X 2. 1 X X 2.2 X X 2.3 X X X 3.1 X X X 3.2 X X X 3.3 X X X 3.4 X X X X 3.5 X X 4.1 X X X 4.2 X X X 4.3 X X X 5. 1 X X X 5.2 X X X X X **5.** 3 X X X X X X 5.4 X X 7. 1 X X X X

| 7.2  | X | X | X | X | X |
|------|---|---|---|---|---|
| 7.3  | X | X | X | X |   |
| 7.4  | X | X | X | X |   |
| 7. 5 | X | X | X | X | X |
| 8. 1 | X |   | X | X | X |
| 8.3  | X |   | X | X | X |
| 8. 4 | X |   | X | X | X |
| 8. 5 | X |   | X | X | X |
|      |   |   |   |   |   |

1 ( , ) + , ( 70% 30%。 [ ] 2008 . ( , **1** 3-5 2009 . 2009 .  $\rangle$ 2011 . , 2011 , 2011

**《** 2017 29 2017 15 Engineering Mechanics sd02030680  $\sqrt{\phantom{a}}$  $\checkmark$ **32** ( 32 2 http://course.sdu.edu.cn/G2S/Template/View.aspx?acti =view&courseType=0&courseId=5531 E

. T

,

> • ] ] 1 1 " 1 ]

> 1 1 1 ] 1 ( ) 1

**[** / 1 1 1 1 > > ] ] 1

r 1

,

0

 1
 2
 3

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

 X
 X

X

X

20%

0

| ` | , , | ` |
|---|-----|---|
| ` |     | ` |
| ` | ` ` | ` |

80%。

. 1, 2, 3, .

[ ]

| <b>✓</b> | ✓        |          |   |
|----------|----------|----------|---|
|          | ✓        | ✓        |   |
|          | ✓        | ✓        | ✓ |
| ✓        | ✓        |          |   |
|          | ✓        | ✓        |   |
|          | <b>✓</b> | <b>✓</b> | ✓ |

[ ]

K2016 21

[ ]

2001。

2004.

 $2005\,{\rm \circ}$ 

2004。

2011。

2009。

2007

2007

c

\_\_\_\_

《 (1)》

2020 10 2020 10

`

| (1)                  |     |  |      |    |   |   |   |  |
|----------------------|-----|--|------|----|---|---|---|--|
| Electric Circuit (1) |     |  |      |    |   |   |   |  |
| Sd019212             | 270 |  |      |    |   |   |   |  |
|                      |     |  |      |    |   |   |   |  |
|                      |     |  |      |    |   |   |   |  |
|                      |     |  |      |    |   |   |   |  |
| √                    |     |  |      |    |   |   |   |  |
| <b>√</b>             |     |  |      |    |   |   |   |  |
| 2                    |     |  | 32 ( | 32 | 0 | 0 | ) |  |
|                      |     |  |      |    |   |   |   |  |
|                      |     |  |      |    | I |   |   |  |
|                      |     |  |      |    |   |   |   |  |

( ) (1)) I

|   | 0           |
|---|-------------|
|   | o           |
|   |             |
|   | • •         |
| 0 | v           |
|   | 0           |
|   |             |
|   |             |
|   | > .         |
|   | <del></del> |
|   |             |
| o | •           |
| • |             |
|   |             |
|   | ) ) ) o     |
|   |             |
|   |             |
|   | 0           |
|   | •           |
|   | 0           |
|   |             |
| o |             |
|   | >           |
|   |             |
|   | 0           |
|   |             |
| o |             |

`

1.

2.

>

« » « I»

0

0

3.

0

0

8.

•

[ ] 1 2 3

1. ; ( 1)

3.

。( 1 2)

4.

。( 2 3)

>

•

0

•

v— л

 $Y-\Delta$   $Y-\Delta$   $\circ$ 

•

0

o

•

**I**1 2 3

1. KCL, KVL, VCR ; (

1) 2. ;

( 1)

4.

( 2)

5. 。 ( 2 3)

0

o

KCL KVL 1 2 1 ; ( 1) 1. 2. 1 2) 。 ( 。( 3. 1) 1

>

[ ]

1 2.

0

0

**1** 1 2

1. . . ( 1)

2.

。 ( 1 2)

3. 。 ( 2)

r j

0

r 1

0

`

| 1 |  |    |   |   |   |   | 0 |
|---|--|----|---|---|---|---|---|
| 2 |  | c  | , | o |   |   |   |
| 3 |  | 21 |   |   | 0 |   |   |
| 4 |  | 0  |   |   | o |   |   |
| 5 |  |    | o | o |   |   |   |
| 6 |  |    | o | K |   | ( | o |
| 7 |  |    |   |   |   | 0 |   |
| 8 |  |    |   |   | " | " |   |

.

| 1 | 1 | 6  |  |  |   |   | 6  |
|---|---|----|--|--|---|---|----|
| 2 | 2 | 5  |  |  |   | 1 | 6  |
| 3 | 3 | 8  |  |  | 1 | 1 | 10 |
| 4 | 4 | 6  |  |  |   |   | 6  |
| 5 | 5 | 4  |  |  |   |   | 4  |
|   |   | 29 |  |  | 1 | 2 | 32 |

`

0 0

30% 70%.

|   |   | 1   | 35-45 |     |
|---|---|-----|-------|-----|
| ( | ) | 2   | 25-35 | 70  |
|   |   | . 3 | 0     |     |
|   |   | 1   | 35    |     |
|   |   | 2   | 25    | 100 |
| ( | ) | . 3 | 20    | 100 |
|   |   | 4   | 20    |     |

|   | , |   |   |
|---|---|---|---|
|   |   | ` | ` |
|   |   |   |   |
|   | o |   |   |
|   |   |   | 0 |
|   |   |   |   |
|   |   |   |   |
| 0 | 0 | 0 | 0 |
|   |   |   |   |

| [ ] |    |    |    |    |     |
|-----|----|----|----|----|-----|
|     |    |    |    |    |     |
|     |    |    |    |    |     |
|     | 20 | 10 | 0  |    | 30  |
|     | 0  | 5  | 10 |    | 15  |
|     | 0  | 0  | 0  | 20 | 20  |
|     | 10 | 5  | 0  |    | 15  |
|     | 5  | 5  | 10 |    | 20  |
|     | 35 | 25 | 20 | 20 | 100 |

| 1 | 9  | 5  | 0 | 14 |
|---|----|----|---|----|
| 2 | 10 | 0  | 0 | 10 |
| 3 | 10 | 9  | 0 | 19 |
| 4 | 7  | 10 | 0 | 17 |
| 5 | 4  | 6  | 0 | 10 |
|   | 40 | 30 | 0 | 70 |

32 )

`

96 (

64

0

( ) ( ) ( (2))

. T

|   | · · · · · · · · · · · · · · · · · · · |
|---|---------------------------------------|
|   |                                       |
| ` | 0                                     |
| ` |                                       |
|   | (1)                                   |
| 0 |                                       |
|   | 0                                     |
|   |                                       |
|   |                                       |
| 0 | 0                                     |
|   |                                       |
|   | 0                                     |
| 0 | 0                                     |
|   |                                       |
|   | 0                                     |
|   | o                                     |
|   |                                       |
|   | 0                                     |
|   | ,                                     |
|   | _                                     |
|   | •                                     |
|   |                                       |
|   | ۰                                     |
|   |                                       |
|   | 0                                     |
|   |                                       |
|   |                                       |
|   |                                       |
|   | 0                                     |
|   |                                       |
|   |                                       |
| 0 |                                       |
|   |                                       |
|   |                                       |
|   |                                       |
|   | 0                                     |
|   |                                       |
|   | 0                                     |
| 0 |                                       |
|   |                                       |
|   |                                       |
|   |                                       |
|   |                                       |
|   |                                       |
|   | 0                                     |

| <br> |   |
|------|---|
|      |   |
|      | ` |
|      |   |
|      | 0 |
|      |   |
| O O  |   |

|      | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|
| 1.1  |   |   |   |   |   |
| 1.2  |   |   |   |   |   |
| 4.3  |   |   |   |   |   |
| 10.1 |   |   |   |   |   |
|      |   |   |   |   |   |
| 0    |   |   |   |   |   |
| 12.1 |   |   |   |   |   |
|      |   |   |   |   |   |

`

1.

2.

« » « » « 1»

« 1》 3. 9. 1 1 5 1. 2.

3.

KVL, KCL

•

[ ] 1, 2, 3 5

1.

2.
( 2);
> 3.

。( 3) 【 】

0

RC RL

RC RL

VCR

1

KCL KVL .

o

。( 4) 【 】

3)

。(

4.

VCR .

0

1. . . ( 1)

2. ; ( 1)

3. . ( 2)

T RLC RLC

o

T I RLC

RLC

RLC RLC .

ľ

1, 2, 3 5

1. ( 1) 2. ( 3) 3. 2) 。( 1 [ ] ( ) ( ) 1 1, 3 5 1) 1. 。(

2. 1) 。 ( 3. 。( 3) 1 1 1 1, 3 5 1. 。( 1) 2. ( 1) 3. 0 ( 3) 1

[ ]

0

R, L, C

0

[ ] 1, 4 5

1. KCL KVL • ( 1)

。 ( 1)

3. 。 ( 4)

>

KCL KVL

VCR 。

, KCL KVL .

VCR

ľ

1, 3 5

1.

( 1)

> 2.

( 1)

3.

( 4)

Т

0

Т

 1.

 1.

 2.

 (

 3)

 3.

 3)

 1.

 2.

 (

 3)

 1.

 2.

 (

 3)

 1.

 2.

 3)

 1.

 2.

 3)

 1.

 2.

 3)

 1.

 2.

 3)

 1.

 2.

 3)

 1.

 2.

 3)

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 4.

 5.

 6.

 7.

 4.

 4.

 5.

 6.

 6.

 7.

 8.

 8.

 9.

 1.

 1.

 1.

 1.

 1.

 1.

 1.

•

`

|    | 1 | 1 | T    |     |
|----|---|---|------|-----|
|    |   |   |      |     |
| 1  |   |   |      | o   |
| 2  |   |   |      | 0   |
| 3  |   |   |      |     |
| 4  |   |   |      | 0   |
| 5  |   |   |      | u " |
| 6  |   |   |      | 0   |
| 7  |   |   | 50HZ | 0   |
| 8  |   |   |      | o   |
| 9  |   |   |      |     |
| 10 |   |   |      |     |

•

| 1 | 6  | 2  | 6  |  |   |   | 8  |
|---|----|----|----|--|---|---|----|
| 2 | 7  | 6  | 2  |  |   |   | 8  |
| 3 | 8  | 4  |    |  | 1 |   | 5  |
| 4 | 9  | 10 | 10 |  | 2 |   | 22 |
| 5 | 10 | 4  | 2  |  |   | 2 | 8  |
| 6 | 11 | 4  | 2  |  |   |   | 6  |

| 7  | 12 | 6  | 6  |  |   |   | 12 |
|----|----|----|----|--|---|---|----|
| 8  | 13 | 4  | 2  |  |   |   | 6  |
| 9  | 14 | 4  |    |  | 1 |   | 5  |
| 10 | 15 | 3  |    |  |   | 1 | 4  |
| 11 | 16 | 4  | 2  |  | 1 | 1 | 8  |
| 12 | 17 | 4  |    |  |   |   | 4  |
|    |    | 55 | 32 |  | 5 | 4 | 96 |

[ ]

• 0

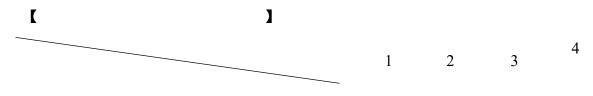
40% 60% 。

|   |   | 1   | 60-80 |     |
|---|---|-----|-------|-----|
|   |   | 2   | 20-40 |     |
| ( | ) | . 3 | 0     | 100 |
|   |   | 4   | 0     |     |
|   |   | 5   | 0     |     |
|   |   | 1   | 25    |     |
|   |   | 2   | 20    |     |
| ( | ) | . 3 | 15    | 100 |
|   |   | 4   | 20    |     |
|   |   | 5   | 20    |     |

| ľ |   | 1  |       |   |    |   |     |    |
|---|---|----|-------|---|----|---|-----|----|
|   |   |    |       |   |    |   |     |    |
|   | , | `  | ,     | ` |    | , | , , | `  |
|   | o |    | 0     |   | 0  |   |     | o  |
|   |   | ,  | , , , | ` |    |   | ,   |    |
|   |   |    | 0     |   | `` | 0 |     | `  |
|   |   |    |       |   | `  |   |     |    |
|   |   |    | o     |   |    |   |     | 0  |
|   |   | 0  |       | 0 |    | o | o   |    |
|   |   |    |       |   |    |   |     |    |
|   |   |    |       |   |    |   |     |    |
|   |   | 15 | 10    |   | 0  | 0 |     | 25 |
|   |   | 5  | 5     |   | 0  | 5 |     | 15 |
|   |   | 0  | 0     |   | 0  | 0 | 20  | 20 |

| 0  | 0  | 0  | 10 |    | 10  |
|----|----|----|----|----|-----|
| 5  | 5  | 15 | 5  |    | 30  |
| 25 | 20 | 15 | 20 | 20 | 100 |

[ ]


| 6  | 3  | 2  | 0 | 0 | 5  |
|----|----|----|---|---|----|
| 7  | 0  | 10 | 0 | 0 | 10 |
| 8  |    |    |   |   |    |
| 9  | 10 | 0  | 0 | 0 | 10 |
| 10 | 10 | 0  | 0 | 0 | 10 |
| 11 | 5  | 5  | 0 | 0 | 10 |
| 12 | 10 | 0  | 0 | 0 | 10 |
| 13 | 10 | 0  | 0 | 0 | 10 |
| 14 | 0  | 10 | 0 | 0 | 10 |
| 15 | 5  | 0  | 0 | 0 | 5  |
| 16 | 10 | 0  | 0 | 0 | 10 |

| 17 | 10 | 0  | 0 | 0 | 10  |
|----|----|----|---|---|-----|
|    | 73 | 27 | 0 | 0 | 100 |

**«** () **»** / 2020 2020 ( )  $\sqrt{\phantom{a}}$ ( )  $\Box$  $\sqrt{}$ 96 64 0 32 , (), ( ) **K** 

.Ā DC AC .Т . T

|   | , | `   |
|---|---|-----|
|   |   |     |
|   | ` |     |
|   | 0 | • 0 |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   | 0 | 0   |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   |     |
|   |   | `   |
|   |   | 0   |
|   |   |     |
|   | 0 |     |
|   |   |     |
|   |   | _   |
|   |   | o   |
|   | 0 |     |
|   |   | 0   |
| 1 |   | į   |



1.1

1.2

4.3

«  $\rangle$ **«** » « **» «** » 1 1.

465

2.

0

`

1.

2. 6.3V

3.4.

·

2.

r 1

0

r j

( ) 1. 2. 3. 1 1. 2. [ ] [ ] 1. 2. 3. [ ] (

 1.
 ( )

 2.
 ( )

0

1. (VCCS)

2. (CCVS)

3. (VCVS)

4. (CCCS)

1.

2.

0

0

1. "" 2. ""

•

1 1. 2. ( , ) 3. 1 [ ] 1. 2. 3. 1 1. RC 2. 3. **[** 1 RC

1. RC 2.

1

1. 2.

3.

4.

[ ]

[ ]

1. R, L, C 2.

3. 4. 1 1. ( ), 2. R, L, C Q 3. 0 1 1 1. 2. R, L, C R, L, C 3. 1 1. ( )

2. 3. 4. 1 [ ] 1. 2. 3. 4. 1 1. 2. RC 3. 4. 1 [ ]

1. 2. 3. ľ 1 1. 2. 1 [ ] 1.

2.
3.
°

1. 2. 3. 4. 1 [ ] ( 1. 2. 

1

1.

2. **[** 1

1.

`

| 1 | `  |     |
|---|----|-----|
| 2 |    | o   |
| 3 | RC | •   |
| 4 |    | 0 0 |
| 5 | ,  | o   |
| 6 |    | ۰   |
| 7 |    | 0   |

•

| 1 |   | 2 |  |  |  | 2 |
|---|---|---|--|--|--|---|
| 2 | ` | 2 |  |  |  | 2 |

| 3 |         | 1.5 | 0.5 | 2 |
|---|---------|-----|-----|---|
| 4 |         | 1.5 | 0.5 | 2 |
| 5 |         | 2   |     | 2 |
| 6 |         | 2   |     | 2 |
| 7 |         | 2   |     | 2 |
| 8 | RC      | 1.5 | 0.5 | 2 |
| 9 | R, L, C |     |     |   |

| 1   | 30% |     |
|-----|-----|-----|
| 2   | 0   | 50% |
| . 3 | 20% |     |
| 1   | 4%  |     |
| 2   | 10% | 20% |
| . 3 | 6%  |     |
| 1   | 6%  |     |
| 2   | 12% | 30% |
| . 3 | 12% |     |

[ ]

| ` |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
| ` |  |  |
|   |  |  |
|   |  |  |
|   |  |  |

[ ]

| 50% | 60% | 0   | 40% | 100% |
|-----|-----|-----|-----|------|
| 20% | 20% | 50% | 30% | 100% |
| 30% | 20% | 40% | 40% | 100% |

`

**[** ]

[ ]

1. . . ,2006.

2. , 2005.

3. , 2004.

\_\_\_\_

**((2)** 

`

| ( ) |
|-----|
|     |

|            |          |   |   |   |   |       |     | $\sqrt{}$ |
|------------|----------|---|---|---|---|-------|-----|-----------|
|            |          |   |   |   |   |       |     |           |
|            |          |   |   |   |   |       |     |           |
|            | <b>V</b> |   |   |   |   |       |     |           |
|            |          |   |   |   |   |       |     |           |
|            |          |   |   |   |   |       |     |           |
|            |          |   |   |   |   |       |     |           |
|            |          |   | ` |   | , | (),   | ( ) |           |
|            |          |   | • |   |   | . , , |     |           |
|            |          |   |   |   |   |       |     |           |
| `          |          |   |   |   |   |       |     |           |
| ľ          | ]        |   |   |   |   |       |     |           |
| _          | »        |   |   |   |   |       |     |           |
| <b>«</b> » |          |   |   |   |   |       |     | 0         |
|            |          | ` |   |   |   |       |     |           |
|            |          |   |   |   |   | `     |     |           |
|            |          | ` | ` |   |   |       |     |           |
|            |          |   |   | 0 |   |       |     |           |
|            | `        |   |   |   |   |       |     |           |
|            |          | 0 |   |   |   |       |     |           |
| ľ          | 1        |   |   |   |   |       |     |           |

•

| _ |   |
|---|---|
| , | ۰ |
| , |   |
|   |   |
| ۰ | o |
|   |   |
|   |   |
| • | • |

`

0

•

ľ J

o

. .

°

[ ]

r J

0

•

ľ

( ) .

r j

•

о .

`

•

•

[ ]

· ·

0

**(** )

0

**,** ( )

( )

#{BHÄ\W\#\$\$65• Ä\W0Ä\W )



•

ľ

· ·

•

°

ľ

0

•

•

[ ]

( ), 1 1 1 ( ) 1 1 

`

`

0

•

•

· [ ]

•

•

**,** ( )

r J

0

•

0

•

ľ

•

|   |   | `   |
|---|---|-----|
|   |   | ۰   |
|   |   |     |
|   |   |     |
| 4 |   |     |
|   |   |     |
|   |   | 0 0 |
|   |   |     |
| 5 |   |     |
|   | ` |     |
|   |   | 0   |
|   |   |     |
| 6 |   |     |
|   |   | 0   |
| 7 |   |     |
| / |   | 0   |

`

|  | ``       |  |  |  |  |  |
|--|----------|--|--|--|--|--|
|  |          |  |  |  |  |  |
|  |          |  |  |  |  |  |
|  |          |  |  |  |  |  |
|  |          |  |  |  |  |  |
|  |          |  |  |  |  |  |
|  |          |  |  |  |  |  |
|  | <b>\</b> |  |  |  |  |  |

|   |   | % |  |
|---|---|---|--|
|   |   | % |  |
| [ | 1 |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   | ` |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |
|   | ` |   |  |
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |

 %
 %

 %
 %

 %
 %

% % % %

`

[ ]

. . . . , 2005

3. . , 2004.

\_\_\_\_

**«** »

2020 9 2020 10

| Electromagnetic Field |       |      |          |               |
|-----------------------|-------|------|----------|---------------|
|                       |       |      |          |               |
|                       |       |      |          |               |
|                       |       |      |          |               |
|                       |       |      |          |               |
|                       | ( )   |      | ( )      |               |
|                       |       | ]    |          |               |
|                       |       |      |          |               |
| 4                     | 80    |      |          |               |
|                       |       |      |          |               |
|                       | `     | •    | (        | )             |
|                       | ://   |      | . /      | H /1000009019 |
|                       | :// . | 163. | / /SDU-1 | 460629161     |

( )

\_【 . O **(**E ), E -M M . T

|      | T ,    |   |   |     |   |
|------|--------|---|---|-----|---|
|      |        |   |   |     |   |
|      | ,      |   | ` |     |   |
| 1    |        |   |   | `   | ` |
|      |        |   |   |     | , |
|      | 0      | 0 |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
| 2    |        |   |   |     |   |
|      | 0      |   |   | ,   |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
|      | ,      |   |   |     |   |
|      |        |   |   |     |   |
| 3    |        |   |   |     |   |
|      |        | ` | ` |     |   |
|      |        |   | , | `   |   |
|      | 0      |   | 0 |     |   |
|      |        |   |   |     |   |
|      | MATLAB |   |   |     |   |
| 4    |        |   |   |     |   |
|      | o      |   |   |     |   |
|      |        |   |   | 0 0 |   |
|      |        |   |   |     |   |
| ľ    | 1      |   |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
|      |        |   |   |     |   |
| 1.3  |        |   |   |     |   |
| `    | 0      |   |   |     |   |
| 2.2  |        |   |   |     |   |
|      |        |   |   |     |   |
| 5.2  |        |   |   |     |   |
| ,    | `      |   |   |     |   |
|      | ,      |   |   |     |   |
|      |        |   |   |     |   |
| 12.2 |        |   |   |     |   |
|      |        |   |   |     |   |
|      | 0      |   |   |     |   |

`

1. SPOC MOOC 2. « >> »、《 » « MATLAB 3.

503

4.

•

**T** 3

1. ;

2.

3.

4.

0

0

[ ]

1.

2.3.

1. 2. 1 1 1. 2. 3. 1 1 

T 1

1 2

1.

1);

2.

( 1 2)

3. ( 1)<sub>°</sub>

•

[ ]

0

arphi

0

0

•

**1** 1 2 3

1. ( 1);

2. ( 1)

3. ( **2**)

4.

( 3)<sub>0</sub>

>

o

•

[ ]

J

[ ] ·

。(

。)

[ ] 1, 2 3

1.

( 1);

2.

( 1 2)

3. ( **3**)

4.

2)。

r j

0

r j

0

 $oldsymbol{arphi}_{ ext{m}}$ 

0

•

0

r J

。( 【 】

[ ]

5

1 2

1.

( 1); 2.

( 1) 3.

( 2)<sub>°</sub>

o

0

0

 $\sim arphi$ 

•

[ ]

。 [ ]

0

1.

1); ( 2. ( 2) 3. ( 1)。 1 1 7 1 1 2 1.

512

(

1); 2. ( 2) 3. ( 3)。 1 **T** 3 **[** ] 1 MATLAB 1

MATLAB

1. MATLAB

2. MATLAB

3. ( , )

( ) .

r 1

MATLAB

0

[ ]

MATLAB "

MATLAB , MATLAB ,

ATLAB

В

MATLAB MATLAB MATLAB M 2 1 2 3 4 MATLAB MATLAB 1. ( **4**) 2. 2) ( 3. 3) ( 1 1 MATLAB gradient , divergence curl quiver

m M

0

0

3 [ ]

 $2 \qquad \qquad 3 \qquad \qquad 4$ 

MATLAB

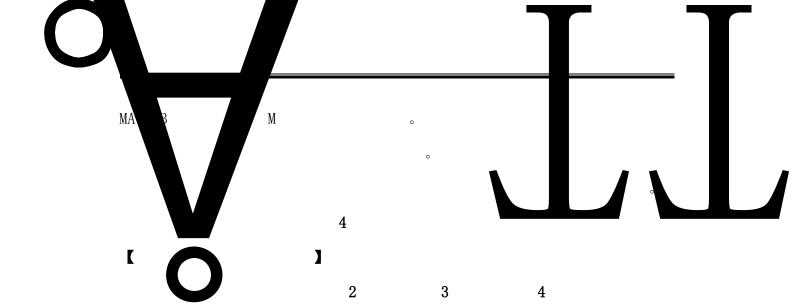
1. MATLAB ;

( 4)

2. ( **2**)

3. ( **3**)

MATLAB , ,


MATLAB

MATLAB

MATLAB .

516

MATLAB



1. MATLAB ; ( 4)
2.

( 2)

3.

(

5

1

3

4

1. ; ( 3)

2. ; ( 4)

[ ]

FELAC ANSYS P /N A H

ANSYS

| 1 |        |   | o |
|---|--------|---|---|
| 2 |        | 0 | • |
| 3 | 1 2    | o | o |
| 4 | 1<br>4 |   | o |
| 5 | 2 2    | o | 0 |

|     | 2      |      |        |
|-----|--------|------|--------|
| 6   | 4      |      |        |
|     |        | <br> | 0      |
|     |        |      |        |
|     | 2      | ,    |        |
| 7   | 2<br>5 | 0    | u      |
|     |        |      | "<br>" |
|     |        |      | 0      |
|     | 2      |      |        |
| 8   | 6      |      |        |
|     | Ü      |      | 0      |
|     | 2      |      |        |
| 9   | 3<br>1 |      |        |
|     | 1      |      | ۰      |
|     |        |      |        |
| 10  | 3<br>4 |      |        |
| 10  | 4      |      |        |
|     |        |      | 0      |
| 1.1 | 4      |      |        |
| 11  | 4      |      |        |
|     |        |      | 0      |
|     | 1      |      |        |
| 12  | 4<br>6 |      |        |
|     | O      |      | ۰      |
|     |        |      |        |
|     | -      |      |        |
| 13  | 5<br>2 |      | 0      |
|     | 2      | 0    |        |
|     |        |      | 0      |
|     |        |      |        |
| 14  | 5      | FAST |        |
|     | 5      |      |        |
|     |        |      | 0      |
| 1.5 | 6      |      |        |
| 15  | 3      |      | •      |
|     |        |      | 0      |
|     | 7      |      |        |
| 16  | 3      |      | u      |
|     | -      |      | "<br>。 |
| 17  |        | `    |        |
| 17  |        | <br> | 0      |
| 18  |        |      |        |
| 10  |        |      | ٥      |
| 19  |        |      |        |
| 17  |        |      | `      |

| ` |   |   |  |    | ·  |  |    |   |   |    |
|---|---|---|--|----|----|--|----|---|---|----|
|   |   |   |  |    |    |  |    |   |   |    |
|   |   |   |  |    |    |  |    |   |   |    |
|   |   |   |  |    |    |  |    |   |   |    |
|   |   |   |  |    |    |  |    |   |   |    |
|   |   |   |  |    |    |  |    |   |   |    |
| 1 | 1 |   |  | 4  | 4  |  | 1  |   |   | 9  |
| 2 | 2 |   |  | 7  | 6  |  | 1  | 1 | 1 | 16 |
| 3 | 3 |   |  | 2  | 4  |  | 2  |   |   | 8  |
| 4 | 4 |   |  | 8  | 6  |  | 2  | 1 | 1 | 18 |
| 5 | 5 |   |  | 4  | 4  |  | 2  | 1 | 1 | 12 |
| 6 | 6 |   |  | 2  | 4  |  | 2  |   |   | 8  |
| 7 | 7 |   |  | 4  | 4  |  |    |   | 1 | 9  |
|   | 1 | 1 |  | 31 | 32 |  | 10 | 3 | 4 | 80 |

[ ]

•

。 40% 60%。

|     | 0 |    |     |
|-----|---|----|-----|
|     |   |    |     |
|     | 1 | 45 | 400 |
| ( ) | 2 | 55 | 100 |
| ( ) | 1 | 25 | 100 |

| 2   | 25 |  |
|-----|----|--|
| . 3 | 25 |  |
| 4   | 25 |  |

1 75% 60%。 75%。 90%。 60%。 90%

[ ]

| 10 | 5  | 0  | 0  | 15  |
|----|----|----|----|-----|
| 10 | 5  | 0  | 0  | 15  |
| 0  | 5  | 10 | 0  | 15  |
| 0  | 0  | 5  | 5  | 10  |
| 5  | 5  | 5  | 0  | 15  |
| 0  | 5  | 5  | 20 | 30  |
| 25 | 25 | 25 | 25 | 100 |

[ ]

| 1   | 10 | 0  | 0 | 0 | 10  |
|-----|----|----|---|---|-----|
| 2   | 15 | 10 | 0 | 0 | 25  |
| 3   | 5  | 5  | 0 | 0 | 10  |
| 4   | 10 | 15 | 0 | 0 | 25  |
| 5   |    |    |   |   |     |
| 6   | 15 | 15 | 0 | 0 | 30  |
| 7   |    |    |   |   |     |
| (%) | 55 | 45 | 0 | 0 | 100 |

| L          | 1                     |          |     |          |
|------------|-----------------------|----------|-----|----------|
| <b>《</b> ⊧ | <b>电磁场仿真实验指导》,课</b> 和 | 呈组自编电子讲义 |     |          |
| ľ          | 1                     |          |     |          |
| 2.         | • -                   | ( ).     |     | 2009.    |
| 3.         |                       |          |     | 2000.    |
| 4.         | B. S. G E             | F T F    | .(2 | E ).B    |
|            | C M P_ 2              | 009      |     |          |
| 5.         | W H. H J, J           | A. B E   |     | . (9 E ) |
|            | B T U                 | P 2019   |     |          |
| 6.         | . MATLAB2             | 2021 .   |     | . 2021   |
| 7.         |                       | MATLAB   | ( ) |          |
|            | 2018.                 |          |     |          |

**《 》** 2017 3 2017 3 P S A С M 01931310  $\checkmark$ **52** ( 44 3 8 ) ( )]  $\gg$ MCS-51 51

K , P

/C

( ) J A S C M . T MCS-51 - T - MCS-51 -, T C K ] 1: 2 3 C ] 1 2 3 2.4 4.1 5.2

1. 2.  $C \rightarrow$ 3. 1 1 1. 2. > 3. 1 51 1

•

1. 2. 51 3. 4. 1 51 **T** 1 0 51 51 0 -51 1 2 3 1. 2. > 3. 4.

5. P ľ 1 > 1 0- 3 1

1> I/O 2. , > ,

3

3. 51 5

o

4. 51 ...

5.

1 51 1 / T0 T1 51 > / CPU 51 > CPU 1 2 3 1. 51 2. P 1 1 51

CPU CPU **—** 51 1 3 1. 51 C 2. C51 3. C51 4. 51 C51 5. P 1 C51 C51 1 51 51 51 C

• •

C 51 C51 . C51 ľ 1 3 **STM**32F10 1. C -M3 STM32 2. STM32 ° 3. STM 4. 、SPI 、AD/DA ] STM32F10 **STM**32F10 1 32 STM32F10  $\mathsf{DMA}$  . - 3 C -M3 32 GPIO

 $_{\circ}$  K

AD DA 。

SPI . .

MCS-51 ${\tt MCS-51}$ 

 4
 3
 6
 2
 1
 8

 5
 4

|       | 1   | 25 |    |
|-------|-----|----|----|
| (80%) | 2   | 15 | 80 |
|       | 3   | 40 |    |
|       | 1   | 3  |    |
| (10%) | 2   | 2  | 10 |
|       | 3   | 5  |    |
|       | 1   | 4  |    |
| (10%) | 2   | 4  | 10 |
|       | . 3 | 2  |    |

| <b>T</b> | 1   |       |       |        |
|----------|-----|-------|-------|--------|
|          | <60 | 60-75 | 75-90 | 90-100 |
|          |     |       |       |        |
|          |     |       |       |        |
|          | 0   |       |       |        |
|          |     |       |       |        |
|          |     |       |       |        |
|          | 0   |       |       | 0      |
|          |     | 0     | o     | 0      |
| ľ        | 1   |       |       |        |

| 课程目标 |   |   |   |  |
|------|---|---|---|--|
| 考核   | 1 | 2 | 3 |  |

| 3 | 2 | 5 | 10 |
|---|---|---|----|
| 3 | 2 | 5 | 10 |

**(** )

| 课程目标<br>考 核 | 1 | 2 | 3 |    |
|-------------|---|---|---|----|
|             | 2 | 1 | 1 | 4  |
|             | 2 | 3 | 1 | 6  |
|             | 4 | 4 | 2 | 10 |

**T** 3

| 课程目标          | 1  | 2  | 3  |    |
|---------------|----|----|----|----|
| 0<br>1 MCS-51 | 25 | 0  | 0  | 25 |
| 2 MCS-51      |    |    |    |    |
| 3             |    |    |    |    |
| 4             | 0  | 15 | 15 | 30 |
| 6             |    |    |    |    |
| 5 /           |    |    |    |    |
| 10 C -        |    |    |    |    |
| C51           | 0  | 0  | 25 | 25 |
| ARM STM32     |    |    |    |    |
|               | 25 | 15 | 40 | 80 |

`

2010 21 .
2. STM32 . 2013

**8ãt**Ω 1y – Q?ô B ‰ € Đ

|   | <b>《</b> |   |    | <b>&gt;</b> |   | _ |      |   |  |
|---|----------|---|----|-------------|---|---|------|---|--|
| > | `        | ` | `` | `           | ` | ` |      |   |  |
|   | 2020 6   |   |    |             |   |   | 2020 | 6 |  |

`

| Automatic Control Theory |
|--------------------------|
| sd01931660               |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
| 80 ( 48+ 32)             |
|                          |
| , ( )                    |
|                          |

[ ]

" 1 A E E . F \_ <u>,</u> \_ . T Ţ Ţ "P S Τ \_ A ", "P S

,

D

A

1 2 3 4 5 6 7 1.3 °

| 2.4  |  |  |  |  |
|------|--|--|--|--|
| 0    |  |  |  |  |
| 4.0  |  |  |  |  |
| 4.2  |  |  |  |  |
|      |  |  |  |  |
| 4.3  |  |  |  |  |
| 0    |  |  |  |  |
| 4.4  |  |  |  |  |
|      |  |  |  |  |
| 0    |  |  |  |  |
| 5.2  |  |  |  |  |
|      |  |  |  |  |
| ,    |  |  |  |  |
| 9.1  |  |  |  |  |
|      |  |  |  |  |
| 9.2  |  |  |  |  |
|      |  |  |  |  |
| 10.1 |  |  |  |  |
|      |  |  |  |  |
| ,    |  |  |  |  |
|      |  |  |  |  |
|      |  |  |  |  |
| o    |  |  |  |  |
| 11.2 |  |  |  |  |
|      |  |  |  |  |
| 0    |  |  |  |  |
|      |  |  |  |  |

•

0

4.

•

5.

o

•

1. (48 )

r J

1

1. ( 1. 6)

2. ( 1)

3.

( 1)

4. ( 1)<sub>°</sub>

0

[ ]

1 1. ( ) 1)

2.

1) 3.

2)。

1

Mason 1

)。 1. 2) 2. ( ) 3. ( 5) 4. ( )。 

1 ( ) ( (Routh) (Hurwitz)

546

1 1 2 3 4 5 1. BODE ( 2) BODE Nyquist 2 ( 3、 4 5) 3 Mr  $0 \omega b$ ωr tp ts ( 1). s% 1 Nyquist

Bode

0

0

•

r j

3 4 6

0

1. (

3)

2. ( 3, 4,

5)

3. (

• •

•

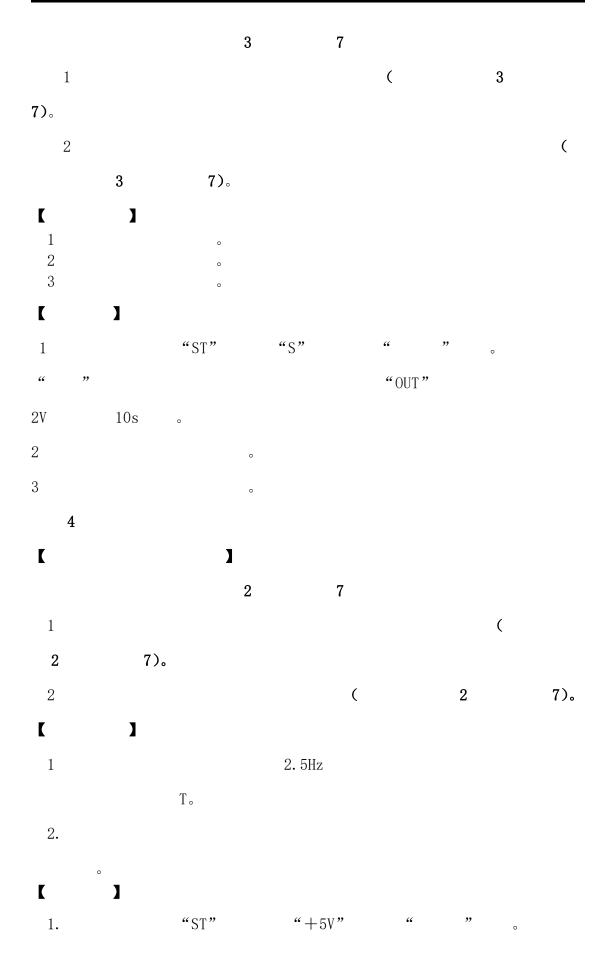
- PID .

o

**I**1 2 6

( )<sub>o</sub> Z

1 (


1) ( 2 2) 3 ( 2 6) 1 Z C (z). 1 (zero-order hold) (first-order hold). Z Z Z Z Z  $\mathbf{z}$ 

1 1 ( 1) 1. 2 ( 1)。 1 [ 1 1 1

552

( 1) ( 1) 2 3 ( 1)。 1 1 [ ] (12) 2. 1 1 1 7 TD ACC+ 1 。( 1) 2 ( 1)。 [ 1 1

```
2
3
]
          "ST"
                "S"
1.
"
                       "OUT"
2V
   10s
2.
2
1
            2 7
              (ξ ωn)
 1
                            (
                               2
 7)。
 2
                               (
 2)。
 3 Routh
                     (
                          2
                              7)。
1
                      \xi \omega n
 2.
 3
                Routh
                            R
"ST"
                      "S"
1
                            "OUT"
           10s
      2V
2
3
1
```



```
2.
                                0
              (20
                      )
2.
    1 MATLAB
                       1
2
                             (ξ
                                  \omega n)
   1
                                                               (
        2)。
   2
                                                          2)。
                                             (
                                       (
                                                    2)。
    3
                                         (
                                                      2)。
   4.
1
                                            ξ
   1
                                                \omega\, n
                                   Simulink
   2.
          MTALAB
1
                                     "Simulink" Simulink
    1
                MATLAB
                                          "Transfer Fcn",
                "Step"、
                                             "Scope"
  "Sum"
   2
                             [Simulation]
                                                [Paraeter1
  Simlink
                         [Simulation] [Start]
    3.
    2 MATLAB
```

```
1
                    2
   1
                                   BODE
   BODE
                   。(
                              2)。
  2.
         Nyquist
                                            。(
   3、
               4)°
   3
  Mr 0 \omega b, \omega r
                                                 tp
  ts (
                 1)。
s\%
1
                           Mr 0 \omega b,
  1.
                                                \omega\, r
        tp
              s%
                  ts
  2.
       MTALAB
                           Simulink
   3.
       MATLAB
                                         BODE
]
               MATLAB
  1.
   MATLAB
  2. >
                                       [bode]
   conv()
                BODE
  3. >
                                            [nyquist]
[nichols]
 [Edit]
            "Axes Properties"
```

4. MATLAB bode() > bb (num, den, v). bb. m MATLAB bb (num, den, v) 3  ${\tt MATLAB}$ 1 3 4 ( 1 3 4)。 ( 2 3 4)。 1 1. Simulink sisotool() 2. 1 Simulink 1 2. Simulink sisotool() 4 6 5 7 1, S ( 5 7)。 6 2,

 7)

 3,
 ( 5

 6
 7)

 4,
 ( 5

 6
 7).

`

| • |        |   |   |
|---|--------|---|---|
|   |        |   |   |
| 1 | 1      | o | o |
| 2 | 1      | o | · |
| 3 | 2      | o |   |
| 4 | 3 5    |   | 0 |
| 5 | 3 6    |   | o |
| 6 | 4<br>4 |   | o |
| 7 | 5 5    |   | • |
| 8 | 6      |   |   |
|   |        |   |   |

|    | 1   |        |   | o |
|----|-----|--------|---|---|
| 9  | 7 2 |        |   | 0 |
| 10 | 8   |        |   | 0 |
| 11 | 9 2 |        |   | o |
| 12 |     | MATLAB |   | o |
| 13 |     |        | , | 0 |

`

| 1  | 1   |     | 2 |   |   |   | 2  |
|----|-----|-----|---|---|---|---|----|
| 2  | 2   |     | 5 | 2 |   |   | 7  |
| 3  | 3   |     | 6 | 6 |   |   | 12 |
| 4  | 1-3 | 1-3 |   |   |   | 2 | 2  |
| 5  | 4   |     | 6 | 6 |   |   | 12 |
| 6  | 5   |     | 6 | 2 |   |   | 8  |
| 7  | 6   |     | 6 | 6 | 1 |   | 13 |
| 8  | 4-6 | 4-6 |   |   |   | 2 | 2  |
| 9  | 7   |     | 4 |   |   |   | 4  |
| 10 | 8   |     | 4 |   |   |   | 4  |
| 11 | 9   |     | 2 |   |   |   | 2  |
| 12 | 7-9 | 7-9 |   |   |   | 2 | 2  |

| 13 | 2-9 |    | 10 |   |   | 10 |
|----|-----|----|----|---|---|----|
|    |     | 41 | 32 | 1 | 6 | 80 |

[ ]

0

。 。 30%

70%。

|   |   | 1 | 40 |     |
|---|---|---|----|-----|
| ( | ) | 2 | 30 | 100 |
|   |   | 3 | 30 |     |
|   |   | 3 | 20 |     |
|   |   | 4 | 25 | 100 |
| ( | ) | 5 | 20 |     |
|   |   | 6 | 20 |     |
|   |   | 7 | 15 |     |

|  | 3 |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

| `` | ` |   | ` |
|----|---|---|---|
| o  | 0 | ۰ | 0 |
|    |   |   |   |
| 0  | o | o | o |
|    |   |   |   |
|    | o | o | o |

| ľ    | 1 |    |    |    |    |    |    |     |
|------|---|----|----|----|----|----|----|-----|
| 考 核  |   |    |    |    |    |    |    |     |
| 课程目标 |   |    |    |    |    |    |    |     |
|      |   |    |    |    |    |    |    |     |
|      |   |    |    |    |    |    |    |     |
|      | 5 | 5  | 5  | 5  | 5  | 0  | 5  | 30  |
|      | 0 | 0  | 10 | 10 | 10 | 0  | 0  | 30  |
|      | 0 | 5  | 5  | 5  | 5  | 10 | 10 | 40  |
|      | 5 | 10 | 20 | 20 | 20 | 10 | 15 | 100 |

| <b>t</b> 1 |   |   |   |    |
|------------|---|---|---|----|
| <b>节</b>   |   |   |   |    |
| 课程目标       |   |   |   |    |
| <u> </u>   |   |   |   |    |
| 1          | 5 | 0 | 0 | 5  |
| 2          |   |   |   |    |
|            | 5 | 5 | 0 | 10 |
|            |   |   |   |    |

| 3 | 5  | 5  | 5  | 15  |
|---|----|----|----|-----|
| 4 | 5  | 10 | 10 | 25  |
| 5 | 0  | 5  | 5  | 10  |
| 6 | 0  | 10 | 5  | 15  |
| 7 | 5  | 5  | 0  | 10  |
| 8 | 5  | 0  | 0  | 5   |
| 9 | 5  | 0  | 0  | 5   |
|   | 35 | 40 | 25 | 100 |

2017 7 « **»** 1 2000 10 1 « **»** 2 «  $\rangle$ 3. 2014 9 **»** « 4. « >> 2017 9 « » : 017 5.

( 60 )

**«** » .

| * " |                                             |
|-----|---------------------------------------------|
|     |                                             |
| 1   | 1-A-5、1-B-5                                 |
| 2   | 2-A-12 (a) (b), 2-A-17 (a) (b)              |
| 3   | 3-A-3、3-A-5、3-A-8(1)(2)(3)(4)、3-A-9(1)(2)   |
|     | 3-A-10(1)(2)(3), 3-A-11, 3-A-12             |
| 4   | 4-A-1(1)(2)(3), 4-A-3(1)(2)(3), 4-A-7, 4-A- |
|     | 18、4-A-12(a) <sup>~</sup> (g)、4-B-4、4-A-14  |
| 5   | 5-A-2(a) (f), 5-A-3(1)(2) (3), 5-A-5        |
| 6   | 6-A-2、6-A-3、6-B-10                          |
| 7   | 7-A-5(1)~(4)、7-A-9                          |
| 8   | 8-A-2、8-A-7                                 |
| 9   | 9- A-5                                      |

( 60 )

● 5 1 (1-A-5、1-B-5、2-A-12 (a) (b)、2-A-17 (a) (b)) 1 (3-A-3、3-A-5、3-A-8(1) (2) (3) (4)、3-A-9(1) (2)、3-A-10(1) (2) (3)、3-A-11、3-A-12)。 1 (4-A-1(1) (2) (3)、4-A-3(1) (2) (3)、4-A-7、4-A-18、4-A-12(a)~(g)、4-B-4、4-A-14) 1 (5-A-2(a)~(f)、5-A-3(1) (2) (3)、5-A-5、6-A-2、6-A-3、6-B-10) (7-A-5(1)~(4)、7-A-9、8-A-2、8-A-7、9-A-5)

•

• 6 .

• 12 °

( 10 )

1, 45 5

 $\langle\!\langle$ ( )》 2020 2020 3 4  $\checkmark$ ( ) \_) □  $\checkmark$ 56 0 16 40 1 «

-[ - ] - . B - M C - V F - C BC -F -- . B

|     | ` |   | , | , | ` |   |
|-----|---|---|---|---|---|---|
|     |   |   |   |   |   |   |
|     |   |   |   | ` | • |   |
|     | • |   |   |   |   |   |
|     |   |   |   |   |   |   |
|     |   |   |   |   |   |   |
|     |   |   |   |   | , | , |
|     |   |   |   |   |   |   |
|     | o |   |   |   |   |   |
|     |   |   | 0 |   |   |   |
|     |   |   |   |   | ` |   |
|     | 0 |   | o |   |   |   |
|     | • |   |   |   | 0 |   |
|     | ` |   |   |   |   |   |
|     |   |   |   |   |   |   |
|     |   |   |   |   |   |   |
|     |   |   | ` | ` |   |   |
|     |   |   |   |   | ` |   |
|     | o |   | ` |   | ( |   |
| ľ   | 1 |   |   |   |   |   |
|     |   |   | 1 | 2 | 3 | 4 |
| 1.3 |   |   |   |   |   |   |
| 1.3 | 0 | ` |   |   |   |   |
|     |   |   |   |   |   |   |

| 2.3   | > |  |  |
|-------|---|--|--|
|       | 0 |  |  |
| 5.1   | ` |  |  |
| •     |   |  |  |
| 10.3. |   |  |  |
|       | o |  |  |

[ ]

1.

2.

3.

[ ]

•

0

•

r j

[ ]

o o

[ ]

1.

2.

3. .

o

· ·

0

o

•

0

o

1.

2.

)

3.

( )<sub>°</sub>
4. ( )<sub>°</sub>

o

1 1 [ 1 1 ( 1. ) 2. ( ) 1 (FFT). • 1

0

ľ

1. ( )

2. ( )

3. ( )

4. ( )

5. ( ).

0

•

0

o

0

o

r J

1. (

2.

> ( ) > 3. ( ) 4. ( ). 5. > )。 [ 1 [ ]

r 1

1.

**,** 

•

0

`

[ ]

r 1

>

ľ

> ( )

1. ( )

2.

) 3. ( ) 4. ( )。 1 [ ]

o

`

| 1 | 1 4 |   |   | 0         |
|---|-----|---|---|-----------|
| 2 | 2 2 |   | o |           |
| 3 | 2 3 | / |   | 0         |
| 4 | 2 5 |   |   | " " " " 。 |
| 5 | 3 5 |   | 0 | MATLAB    |
| 6 | 4   |   |   |           |

|    | 3   |     |     | 0    |
|----|-----|-----|-----|------|
| 7  | 5   |     | o   | •    |
| 8  | 5   |     | RC  | RC ° |
| 9  | 5   |     |     | >    |
| 10 | 7 5 | FFT | FFT | o    |
| 11 | 8   |     |     |      |

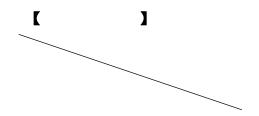
|    |     |   | 0 |
|----|-----|---|---|
| 12 | 8 5 |   | 0 |
| 13 | 9   |   | 0 |
| 14 |     |   |   |
| 15 |     | ` | • |

`

| ı |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

|   | ı |   |    | 1  | Г | Г | г | i  |
|---|---|---|----|----|---|---|---|----|
|   |   |   |    |    |   |   |   |    |
|   |   |   |    |    |   |   |   |    |
|   |   |   |    |    |   |   |   |    |
|   |   |   |    |    |   |   |   |    |
| 1 | 1 |   | 4  |    |   |   |   | 4  |
| 2 | 2 |   | 4  |    |   |   |   | 4  |
| 3 | 3 |   | 4  | 4  |   |   |   | 8  |
| 4 | 4 |   | 4  |    |   |   |   | 4  |
| 5 | 5 |   | 4  | 4  |   |   |   | 8  |
| 6 | 6 |   | 4  | 4  |   |   |   | 8  |
| 7 | 7 |   | 4  |    |   |   |   | 4  |
| 8 | 8 |   | 6  | 4  |   |   |   | 10 |
| 9 |   | ` |    |    |   | 2 | 4 | 6  |
|   |   |   | 34 | 16 |   | 2 | 4 | 56 |

`


[ ]

| 20% | ó |   | 80% | ס  |     |
|-----|---|---|-----|----|-----|
|     |   |   |     |    |     |
|     |   |   | 1   | 21 |     |
|     |   | ) | 2   | 60 | 100 |
|     |   | , | 4   | 19 |     |
|     |   |   | 1   | 20 |     |
|     |   |   | 2   | 30 | 100 |
|     | ( | ) | 3   | 30 | 100 |
|     |   |   | 4   | 20 |     |

[ ]

| R- |   |   |   |   |
|----|---|---|---|---|
|    |   |   |   |   |
|    |   |   |   |   |
|    | ` | • | , | • |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |
|    |   |   |   |   |

| ]  |    |    |    |     |
|----|----|----|----|-----|
|    |    |    |    |     |
| 10 | 15 | 0  | 5  | 30  |
| 5  | 5  | 0  | 5  | 15  |
| 5  | 10 | 0  | 10 | 25  |
| 0  | 0  | 30 | 0  | 30  |
| 20 | 30 | 30 | 20 | 100 |



| 1 | 3  | 0  | 0  | 3   |
|---|----|----|----|-----|
| 2 | 6  | 0  | 0  | 6   |
| 3 | 0  | 3  | 0  | 3   |
| 4 | 0  | 9  | 0  | 9   |
| 5 | 0  | 19 | 7  | 26  |
| 6 | 9  | 6  | 6  | 21  |
| 7 | 3  | 3  | 6  | 12  |
| 8 |    |    |    |     |
|   | 0  | 20 | 0  | 20  |
|   | 21 | 60 | 19 | 100 |

•

Ϊ‰

**«** 

2020 4 2020 5

| 01932    | 290          |    |     |  |
|----------|--------------|----|-----|--|
|          |              |    |     |  |
|          |              |    |     |  |
|          | $\checkmark$ |    |     |  |
|          | ( )          | (  | ) 🗆 |  |
|          |              |    |     |  |
| <b>V</b> |              |    |     |  |
| 2        |              |    |     |  |
|          | 36           | 28 | 8   |  |
|          |              |    |     |  |
|          |              |    |     |  |
|          |              |    |     |  |

|   | ]        |   |
|---|----------|---|
| « | <b>》</b> | 0 |

. B

T. T ,

,

`

| 0 |   |  |
|---|---|--|
|   |   |  |
|   | 0 |  |

|    | 1   |   |   |   |
|----|-----|---|---|---|
|    |     | 1 | 2 | 3 |
| ,  | 2.3 |   |   |   |
| ,  |     | Н |   |   |
| o  |     |   |   |   |
|    | 5.1 |   |   |   |
| `` |     |   | Н |   |
|    | 0   |   |   |   |
| •  | 7.1 |   |   |   |
|    |     |   |   | M |
| 0  | 0   |   |   |   |

1.

2.

0

3.

4.

o

1, 3

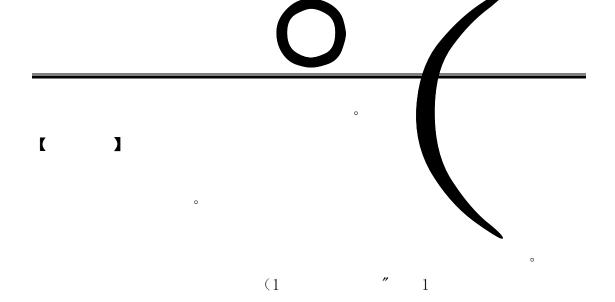
1 ( 1)

2 ( 3)

3 ( 1).

•

° '


) 。

•

1 1, 3 1) ( 1 2 **3**) 3 1)。 1 AM, DSB, SSB) 1 1 2, 3 PCM DPCM DM( 1. **3**) 2) 2. PCM 3. DPCM DM ( 2)。

PCM ( , ) PCM, DPCM DM .

]



] 1, 2 1. ( 2) 2. ( 1). 1 ( )。 1 0 ] 1, 2 1. ( 1) 1)。 2. ( 2) 3. ( 1 1

O

( ) ,

•

1

o 0

o

o

1 1 1 0

 $\frac{2}{3}$ 

| 4  | 3      |   | o |   |   | "<br>" | o |
|----|--------|---|---|---|---|--------|---|
| 5  | 3<br>1 | o |   | o | ш | "      | 0 |
| 6  | 4<br>1 |   |   | o |   | o      |   |
| 7  | 4<br>2 |   | 0 |   |   |        | 0 |
| 8  | 5<br>1 |   |   | o | o |        |   |
| 9  | 6<br>1 |   |   | 0 |   |        | 0 |
| 10 | 6 2    |   |   | o |   |        | o |
| 11 | 7      |   |   | 0 |   | 0      | ` |

| 1 | 1 | 4 |   |  |  |  |   |  | 4 |
|---|---|---|---|--|--|--|---|--|---|
| 2 | 2 | 3 |   |  |  |  |   |  | 3 |
| 3 | 3 | 3 | 2 |  |  |  | 1 |  | 6 |

| 4 | 4 | 4  | 2 |  | 1 |  | 7  |
|---|---|----|---|--|---|--|----|
| 5 | 5 | 4  | 2 |  |   |  | 6  |
| 6 | 6 | 4  | 2 |  | 1 |  | 7  |
| 7 | 7 | 2  |   |  | 1 |  | 3  |
|   |   | 24 | 8 |  | 4 |  | 36 |

[ ]

•

。 。 20%

|   |   | 80%。 |    |     |
|---|---|------|----|-----|
|   |   |      |    |     |
|   |   | 1    | 36 |     |
| ( | ) | 2    | 40 | 100 |
|   |   | . 3  | 24 |     |
|   |   | 1    |    |     |
| ( | ) | 2    |    | 100 |
|   |   | . 3  | 10 |     |

|   |          | <br> |  |
|---|----------|------|--|
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   |          |      |  |
|   | <u> </u> |      |  |
| ľ | 1        |      |  |
|   |          |      |  |
|   |          |      |  |

| _ [ ] |    |    |    |     |
|-------|----|----|----|-----|
|       |    |    |    |     |
|       |    |    |    |     |
|       |    |    |    |     |
|       | 25 | 25 | 0  | 50  |
|       | 15 | 5  | 0  | 20  |
|       | 10 | 10 | 10 | 30  |
|       | 50 | 40 | 10 | 100 |

| 1 | 10 | 0  | 14 | 24  |
|---|----|----|----|-----|
| 2 | 3  | 0  | 5  | 8   |
| 3 | 0  | 10 | 5  | 15  |
| 4 | 5  | 15 | 0  | 20  |
| 5 | 5  | 5  | 0  | 10  |
| 6 | 10 | 10 | 0  | 20  |
| 7 | 3  |    |    | 3   |
|   | 36 | 40 | 24 | 100 |

2016 "

2016 "

1. 2016.

2. ()

2008 " " "

3. ()

2013 " "

**« 》** 2017 3 2017 4 ( )] > [ ( )]

- - - - -

|   |         |       |     |        |   | = |
|---|---------|-------|-----|--------|---|---|
| В |         | <br>  | -   |        | , |   |
|   | 2 -     | <br>- | . B | ,      |   | , |
| - | . I     |       | -   | -<br>T | - |   |
| , |         |       |     | ,      |   | , |
| ` |         |       |     |        |   |   |
| ľ | ]<br>1. |       |     |        |   |   |
| ٥ | 2.      |       | o   |        |   |   |
| 0 |         |       |     |        |   |   |

°
3.

|   | 1 | 2 | 3 |
|---|---|---|---|
| • |   | Н | M |
| • | М |   | M |

•

>

1.

2.

0

3.

4.

0

1, 3

1 ( 1)

2 **3**)

3 ( 1) 。

o

OSI TCP/IP 1 1 1 1 1) 2 1) 。 1 ( ) 。 1 

1 1, 3 1 PPP 1) ( 2 -CSMA/CD ( 1) 3 3)。 ( 1 CSMA/CD 1 ), PPP CSMA/CD 1 1, 3 1 ( 1)

2. , IP ΙP **3**) 3. ICMP ( 1)。 1 ΙP ΙP 1 ΙP ΙP IP ARP RARP ICMP ICMP VPN NAT 1 1, 3 1) ( 1 2. ( 1) UDP

```
3.
             TCP
                          TCP
                                               TCP
                     3)。
         (
1
       UDP
            TCP
                         TCP
                                              TCP
 1
                   UDP
                    UDP
     UDP
                   TCP
                    TCP
     TCP
                                        TCP
 TCP
    TCP
     TCP
                     (
                                                   ARQ
    )
1
                     1, 2, 3
                    (DNS)
                                      (
                                                  1)
  1
  2.
                                            , URL,
                             (
     )
                                     1)
                          (
                                                  3)
  3.
             DHCP
                                       (
                                                   2) 。
  3.
                                        (
1
```

(DNS)

٥

T DNS

ΙP

WWW

, , URL

DHCP

DHCP ,

•

| 1 | 1 | 3  |  |    |  |  | 1 |  | 4  |
|---|---|----|--|----|--|--|---|--|----|
| 2 | 2 | 1  |  |    |  |  |   |  | 1  |
| 3 | 3 | 3  |  |    |  |  |   |  | 3  |
| 4 | 4 | 4  |  |    |  |  |   |  | 4  |
| 5 | 5 | 3  |  |    |  |  |   |  | 3  |
| 6 | 6 | 4  |  | 24 |  |  | 1 |  | 29 |
|   |   | 18 |  |    |  |  | 2 |  | 44 |

[ ]

。 。 。 30%

| 7 | $\cap$ | 0/ |   |
|---|--------|----|---|
| 1 | U      | 70 | 0 |

|   |   | 1   | 74 |     |
|---|---|-----|----|-----|
| ( | ) | 2   | 0  | 100 |
|   |   | . 3 | 26 |     |
|   |   | 1   |    |     |
| ( | ) | 2   |    | 100 |
|   | · | . 3 | 0  |     |

|   |  |  | _ |
|---|--|--|---|
|   |  |  | 1 |
|   |  |  | 4 |
| _ |  |  | _ |

| _ | _ |  |  |
|---|---|--|--|
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |
|   |   |  |  |

| 20 | 0 | 0 | 20 |
|----|---|---|----|

| 10 | 0  | 0 | 10  |
|----|----|---|-----|
| 0  | 70 | 0 | 70  |
| 30 | 70 | 0 | 100 |

[ ]

| 1 | 15 | 0 | 5  | 20  |
|---|----|---|----|-----|
| 2 | 4  | 0 | 0  | 4   |
| 3 | 7  | 0 | 8  | 15  |
| 4 | 14 | 0 | 6  | 20  |
| 5 | 14 | 0 | 2  | 16  |
| 6 | 20 | 0 | 5  | 25  |
|   | 74 | 0 | 26 | 100 |

6. 2008 "

0 0

7. Visual C++ 2013.

/ 2017 4 2017 5

| P                       | A   | S            | C M |   |
|-------------------------|-----|--------------|-----|---|
| 01931                   | 310 |              |     |   |
|                         |     |              |     |   |
|                         |     |              |     |   |
|                         |     | $\checkmark$ |     |   |
|                         |     |              |     |   |
|                         | ( ) | (            | ) 🗆 |   |
| $\overline{\checkmark}$ |     |              |     |   |
|                         |     |              |     |   |
|                         | 52  | 44           |     | 8 |
|                         |     |              |     |   |
|                         |     | , ,          | •   |   |

MCS-51 51 K 、 P /C ]-. T MCS-51 - . T - MCS-51 -, , T - C K P -. T-K , P 1

| 0   |       |
|-----|-------|
|     |       |
|     |       |
|     |       |
|     | 0     |
| ,   | K 、 P |
|     |       |
|     | `     |
| С , | o     |
|     |       |
| ۰   | ~     |
|     | C     |
|     |       |

| ľ   |   |   | 1 |   |   |   |
|-----|---|---|---|---|---|---|
|     |   |   |   | 1 | 2 | 3 |
| 2.4 |   |   |   |   |   |   |
|     |   | 0 |   |   |   |   |
| 4.1 |   |   |   |   |   |   |
|     |   |   | 0 |   |   |   |
| 5.2 |   |   | ` |   |   |   |
| ,   |   |   |   |   |   |   |
|     | ` | 0 |   |   |   |   |

, , , C

o

o

o

`

**[** ]

1.

2. >

3.

**[** ] 51

•

•

•

、BCD 、

ASCII 。 -51

ľ

51 1. 2. 51 3. 51 51 1 51 51 1 -51 51 CPU. 51 -51 1 1 1. 2. 51 3. 4. 1

51 1 51 51 -51 1 1, 2 3 1. )。 ( 2. )。 > 3. ( )。 4. ( )。 5. P )。 ( 1

>

•

0

o

0

0

•

0

0- 3

2 3

1> I/O .

2. , > ,

3. 51 5

4. 51 .

5. P .

```
1
Ю
1
                       0- 3
                       I/O
     P0-P3
                                             I/O
                  >
          LED
            -51
                    51
                                      。 51
                                                    5
                 51
1
                       2
                          3
        51
  1.
         /
                     (
                                 )。
  2.
        51
  (
  3.
     )。
  4.
        51
                                )。
  5.
                                            (
  )。
  6.
                             (
                                             )。
       P
1
       51
```

1 / T0 T1 > / 51 CPU 51 > CPU **—** 51 ] 2 3 1. 51 C  $)_{\circ}$ 2. C51 ( )。 3. C51 (  $)_{\circ}$ 4. 51 C51  $)_{\circ}$ ( )。 5. P 1 C51 C51 1 51 51 51 C 51

51 51 C K C 51 C51 C51 1 2 3 ( 1. 51 )。 2. ( P )。 1 1 51 , >

CPU

0

CPU

0

•

| 1 | 0 1    |        | 0        | o |
|---|--------|--------|----------|---|
| 2 | 1 1    | 51     | X86<br>° | o |
| 3 | 2      |        | "<br>"   | • |
| 4 | 3 1    |        | A G      | o |
| 5 | 4 2    | ``     |          | 0 |
| 6 | 4<br>4 | MCS-51 | ۰        | 0 |
| 7 | 4 4    | MCS-51 | ۰        | ۰ |
| 8 | 5<br>1 | MCS-51 | 13       | 0 |
| 9 | 5      | /      |          |   |

| 80%。   |   |
|--------|---|
| OU/0 o | 0 |

|       | 1 | 25 |    |
|-------|---|----|----|
| (80%) | 2 | 15 | 80 |
|       | 3 | 40 |    |
|       | 1 | 3  |    |
| (10%) | 2 | 2  | 10 |
|       | 3 | 5  |    |
|       | 1 | 4  |    |
| (10%) | 2 | 4  | 10 |
|       | 3 | 2  |    |

[ ]

| o |   |   |   |
|---|---|---|---|
|   |   |   |   |
|   |   |   | • |
| 0 | o | 0 | o |

[ ]

| 15 | 20 | 15 | 50 |
|----|----|----|----|
| 15 | 20 | 15 | 50 |

| 1 |    |    |    |    |
|---|----|----|----|----|
|   |    |    |    |    |
|   |    |    |    |    |
|   | 10 | 5  | 5  | 20 |
|   | 10 | 15 | 5  | 30 |
|   | 20 | 20 | 10 | 50 |

| 0         |    |    |    |     |
|-----------|----|----|----|-----|
| 1 MCS-51  | 15 | 10 | 0  | 25  |
| 2 MCS-51  |    |    |    |     |
| 3         |    |    |    |     |
| 4         | 10 | 25 | 15 | 50  |
| 6         |    |    |    |     |
| 5 /       | 0  | 5  | 20 | 25  |
| 10 C -C51 | V  | U  | 20 | 20  |
|           | 25 | 40 | 35 | 100 |

[ ] K 2010 21

K

 I
 J

 1.
 ( 2 )
 2018

 2.
 2009
 21

3. 51 2008

\_\_\_\_

**«** 

2021 3 2021 4

|   | ( | )  | (     | ) 🗆 |    |
|---|---|----|-------|-----|----|
| √ |   |    |       |     |    |
|   |   | 3) | 119 ( | 102 | 14 |
|   |   |    |       |     |    |
|   |   |    |       |     |    |
|   |   |    |       |     |    |

( 200 , ) « »

` `

0

"Fundamentals of Electrical Engineering" is one of the professional fundamental courses for students majoring in Electrical Engineering and Its Automation. It mainly focuses on fundamental principles of power system analysis, high voltage and insulation, high voltage apparatus, power system protection, and power system operation. With this students should grasp the theoretical basis of electrical engineering, understand the restrictions that electrical equipment can tolerate, and establish the overall concepts of power system design, operation, control, protection, and decision-making. This course helps students to develop the capability of analyzing and solving engineering problems, and establish thoughts of engineering science. It plays a central role in training talents in Electrical Engineering and Its Automation.

`

•

" "

, ,

•

| , |   |
|---|---|
|   |   |
|   |   |
|   |   |
|   | ` |
|   |   |
| ` |   |
| ` |   |
|   | o |
| ` |   |

[ ]

|     | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| 1.3 |   |   |   |   |
| 1.4 |   |   |   |   |
| 3.1 |   |   |   |   |
| 0   |   |   |   |   |
| 4.1 |   |   |   |   |
| 7.2 |   |   |   |   |
| > . |   |   |   |   |

 $H \hspace{1cm} M \hspace{1cm} L$ 

1. 2. « >> 《 »、《 »、《 >> 3. 119 7 102 14 3 , 6 42 3 3 60 8 . 4 (2 2 0 0 0 ) ] 1. 1 1) 2) 3)

] ] 0 (8 6 1 1 0 ) ] 1, 2, 3. 1 1) / 2) 3) 4) 1 1) « **»** « **»** ( ) 2) « **» »** ) 3) 4) ] ( )

•

0

1) Π 2)

3) — 4) PQ

。 [ ]

1) "

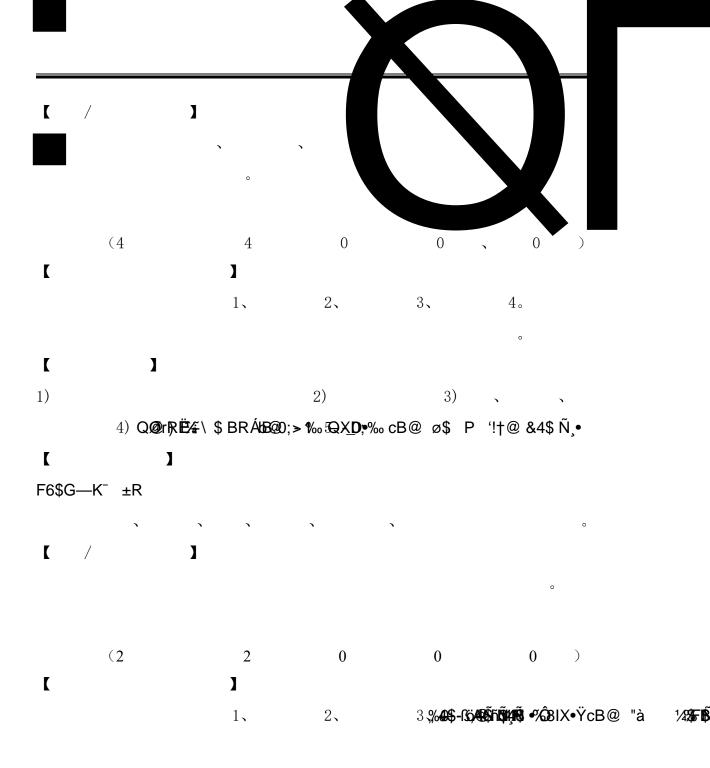
2)  $\Pi$   $\Pi$  3)

PQ .

4)

5)

6)


[ / ]

PQ (6 4 1 1 ) 1 1, 2, 3, 4. 1 1) 2) 3) 1) 1 « **»** « **»** 2) 2) ] (4 4 0 1 0 ) 1 1, 3, 4.

|          | 1          |    |    |     |     |
|----------|------------|----|----|-----|-----|
| 1)       |            |    |    | 2)  | 3)  |
|          |            |    |    | 4)  |     |
|          | 4)         | 5) |    |     | 0   |
| 6)       |            |    |    |     | o   |
| <b>T</b> | 1          |    |    |     |     |
| 1)       | 2)         |    |    |     |     |
| [        | /          | 1  |    | 0   |     |
| •        | ,          | •  |    |     |     |
|          |            |    |    |     |     |
|          |            |    |    | o   |     |
|          | (4         | 4  | 0  | 0 , | 0 ) |
| ľ        | \ <u>-</u> | 1  | ·  | ,   | ,   |
| -        |            | 1, | 3, | 4.  |     |
|          |            |    |    |     |     |
|          |            |    |    | 0   |     |
| •        | 1          |    |    |     |     |
| 1)       |            | 2) |    | 3)  | 4)  |
|          | 0          |    |    |     |     |
| ľ        | 1          |    |    |     |     |
|          |            |    |    |     |     |
|          |            |    | •  | 0   |     |
| ľ        | /          | ]  |    |     |     |
| _        |            |    |    |     |     |
|          | 0          |    |    |     |     |

(10 10 0 0 0 ) 1 1, 3, 4. 1 1) 2) 0 1 ] (4 4 0 0 0 ) 1 1, 3, 4. 1 1) 2) 3) 1 ] 0 (16 14 0 2 0 )

1 1, 3, 4. 1 1) 2) 3) 4) 5) 6) SF6 ] ] (6 6 0 0 ) 0 1 1, 2, 3, 4. 1 1) 2) 3) 1



1 (14 12 0 2 ) 0 1 1, 2, 3, 4. 1 1) 2) 3) 4) ( ) 5) ] " 1) +2 4 2) 1 3) 1 ( ) 4) 2 +2 5) 2 0 6) 0 1 /

(4 4 0 0 ) 0 1 1, 2, 3,  $4 \circ$ ] 1) 2) 3) 4) 5) 1 1) 1

2) 1 3) 2 1 (20 16 0 ) 0 1 1, 2, 3, 4.

1 1) 2) 3) 4) 5) 1 0 1) 2 2) 3 +1 3) +1 3 4) 2 +1 5) 1 1 6) 7) ] (2 2 0 0 0 ) 1 3, 1, 2, 4.

0

( ) 1) 2) 3)

•

1) 1 ...

0

1, , , , (

) ]

3、 1

4、 **1** 

o

|     | Г    |          |   |
|-----|------|----------|---|
|     |      |          |   |
|     |      |          |   |
|     |      |          |   |
|     |      |          |   |
|     |      |          |   |
| 1   |      |          |   |
|     |      |          |   |
| 2   |      |          |   |
|     |      |          |   |
| 3   | _    |          |   |
|     | _    | ""       |   |
| 4   |      | C F 00   |   |
| 4   |      | C. F 88  |   |
|     |      |          |   |
| 5   |      |          |   |
|     |      | —EEAC    |   |
|     |      |          |   |
| 6   |      |          |   |
|     |      |          |   |
|     |      |          |   |
|     |      |          |   |
|     |      |          |   |
|     |      |          | _ |
|     |      |          | " |
|     | , ,  | ,        | 0 |
| 7   | / /  | /        |   |
|     |      | 0        |   |
|     |      |          |   |
|     |      |          | 0 |
| 8   |      | <i>"</i> |   |
|     |      | 2008     | , |
|     |      |          |   |
|     |      |          |   |
|     |      |          | , |
|     |      |          | • |
| 9   |      | ( )      |   |
|     |      |          |   |
|     |      |          |   |
|     |      | 0        | 0 |
| 1.0 |      |          |   |
| 10  |      |          |   |
|     |      | 0        |   |
|     |      |          |   |
|     | <br> |          | o |
|     |      |          |   |
| 11  |      |          |   |
|     |      |          | 0 |
|     |      |          |   |

|    | 1 | Γ | I |     |
|----|---|---|---|-----|
|    |   |   | o |     |
| 12 |   |   |   |     |
| 13 |   |   |   | u » |
| 14 |   |   |   |     |
| 15 |   |   |   |     |
|    |   |   |   |     |
| 16 |   |   |   |     |

| 1 | 1 | 2  |   |  |  |   | 2  |
|---|---|----|---|--|--|---|----|
| 2 | 2 | 6  | 1 |  |  | 1 | 8  |
| 3 | 3 | 8  | 2 |  |  | 1 | 11 |
| 4 | 4 | 4  | 2 |  |  | 1 | 7  |
|   | _ |    | 1 |  |  |   | 5  |
| 5 | 5 | 4  | 1 |  |  |   |    |
| 6 | 6 | 4  |   |  |  |   | 4  |
| _ |   |    |   |  |  |   | 10 |
| 7 | 7 | 10 |   |  |  |   | 4  |
| 8 | 8 | 4  |   |  |  |   | +  |

| 9  | 9  | 14  | 2  |  |  |   |   | 16  |
|----|----|-----|----|--|--|---|---|-----|
| 10 | 10 | 6   |    |  |  |   | - | 6   |
| 11 | 11 | 4   |    |  |  |   |   | 4   |
| 12 | 12 | 2   |    |  |  |   |   | 2   |
| 13 | 13 | 12  | 2  |  |  |   |   | 14  |
| 14 | 14 | 4   |    |  |  |   |   | 4   |
| 15 | 15 | 16  | 4  |  |  |   |   | 20  |
| 16 | 16 | 2   |    |  |  |   |   | 2   |
|    |    |     |    |  |  |   |   |     |
|    |    | 102 | 14 |  |  | 3 |   | 119 |

[ ]

30% 30%

|   |   | 1 | 40 |     |     |
|---|---|---|----|-----|-----|
|   |   | 2 | 30 | 100 |     |
| ( | ) |   | 3  | 20  | 100 |
|   |   | 4 | 10 |     |     |
|   |   | 1 | 55 |     |     |
|   |   | 2 | 45 | 100 |     |
| ( | ) | 3 | 0  | 100 |     |
|   |   | 4 | 0  |     |     |
|   |   | 1 | 55 | 100 |     |

| ( | ) | 2 | 45 |  |
|---|---|---|----|--|
|   |   | 3 | 0  |  |
|   |   | 4 | 0  |  |
|   |   | 1 |    |  |

| ] |   |   |   |
|---|---|---|---|
|   |   |   |   |
| , | , | ` | ` |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

| <b>(</b> ) |    |    |    |    |     |
|------------|----|----|----|----|-----|
|            |    |    |    |    |     |
|            |    |    |    |    |     |
|            |    |    |    |    |     |
|            | 15 | 10 | 5  | 0  | 30  |
|            | 20 | 5  | 0  | 0  | 25  |
|            | 0  | 5  | 10 | 10 | 25  |
|            | 5  | 10 | 5  | 0  | 20  |
|            | 40 | 30 | 20 | 10 | 100 |

| _ |  | _   |
|---|--|-----|
|   |  | 1   |
|   |  | - 4 |
|   |  |     |

| <b>(</b> 1) <b>)</b> |    |    |   | 0 |     |
|----------------------|----|----|---|---|-----|
|                      |    |    |   |   |     |
|                      | 10 | 0  | 0 | 0 | 10  |
|                      | 10 | 10 | 0 | 0 | 20  |
|                      | 10 | 15 | 0 | 0 | 25  |
|                      | 10 | 10 | 0 | 0 | 20  |
|                      | 10 | 15 | 0 | 0 | 25  |
|                      | 50 | 50 | 0 | 0 | 100 |

| 20 | 20 | 0 | 0 | 40  |
|----|----|---|---|-----|
| 15 | 20 | 0 | 0 | 35  |
| 15 | 10 | 0 | 0 | 25  |
| 50 | 50 | 0 | 0 | 100 |

| <b>(</b> 2) <b>)</b> |    |    |   | 0 |     |
|----------------------|----|----|---|---|-----|
|                      |    |    |   |   |     |
|                      |    |    |   |   |     |
|                      |    |    |   |   |     |
|                      | 20 | 15 | 0 | 0 | 35  |
|                      | 15 | 25 | 0 | 0 | 40  |
|                      | 15 | 10 | 0 | 0 | 25  |
|                      | 50 | 50 | 0 | 0 | 100 |

| 10 | 5  | 0 | 0 | 15  |
|----|----|---|---|-----|
| 5  | 10 | 0 | 0 | 15  |
| 5  | 5  | 0 | 0 | 10  |
| 5  | 0  | 0 | 0 | 5   |
| 10 | 10 | 0 | 0 | 20  |
| 5  | 5  | 0 | 0 | 10  |
| 10 | 15 | 0 | 0 | 25  |
| 0  | 0  | 0 | 0 | 0   |
| 50 | 50 | 0 | 0 | 100 |

| ľ    | 1 |   |   |    |   |     |      |
|------|---|---|---|----|---|-----|------|
|      |   |   |   | (  | ) |     | 2008 |
| 1    |   | " | " |    | 0 |     |      |
| ľ    | 1 |   |   |    |   |     |      |
| 1,   |   |   | ( | )  |   | 200 | 4    |
| 2,   | , | , |   |    | ( | ).  | ,    |
| 2003 |   |   |   |    |   |     |      |
| 3,   |   |   | ( | ). | : |     | 2009 |
| 4,   |   |   |   |    | ( | )   |      |
| 2010 |   |   |   |    |   |     |      |

2020. 3 2020. 3

|   | $\checkmark$ |     |    |
|---|--------------|-----|----|
|   |              |     |    |
|   |              |     |    |
|   |              |     |    |
|   |              |     | _  |
| 1 | 32           |     | 26 |
|   |              |     |    |
|   |              | ( ) |    |
|   |              |     |    |

`

`

. I

E

|   |   | ` |
|---|---|---|
| 1 |   | ` |
|   |   | 0 |
|   | 0 |   |
| 2 |   |   |
|   | , |   |

|   | o   |                                       |
|---|-----|---------------------------------------|
|   |     | 0                                     |
|   |     |                                       |
|   |     |                                       |
| 3 | `   |                                       |
| 3 |     | `                                     |
|   | 0   | ,                                     |
|   |     | ō                                     |
|   |     | , , , , , , , , , , , , , , , , , , , |
|   |     |                                       |
|   | `   |                                       |
| 4 | 0   |                                       |
|   | `   |                                       |
|   | ō   | 0                                     |
|   | 0   | 0                                     |
|   |     |                                       |
|   |     | `                                     |
|   |     |                                       |
|   |     | 0                                     |
|   |     |                                       |
| 5 |     | `                                     |
|   |     |                                       |
|   | • • | 0                                     |
|   | 0   |                                       |
|   |     |                                       |
|   |     |                                       |
|   |     | 0                                     |

|     | 1 | 2 | 3 | 4 | 5 |
|-----|---|---|---|---|---|
| 6.1 |   |   |   |   |   |
| 6.2 |   |   |   |   |   |
| 7.1 |   | Н |   |   |   |
| 8.1 |   |   | Н |   |   |
| 9.1 |   |   |   | Н |   |
| 9.2 |   |   |   | M |   |

(3 ) ( )

2, ( )

[ ] 1,

2、 3、

(3)

1

0

(3 ) [ ]

•

•

1, ( )

( 2, ) 3、 ( ) 4、 。( ) ] 1, 2, 3, 1 (3 ) ] ( ) 1, 2, ( ) ( ) 5, 6、 。 ( ) 1 1, 2,

3, ] (4 ) 1 ( 1, ) 2, ( ) 3, 。( ) 1 1, 2, 3, 1 (10 ) ] 

1 3

3 4

60 69 60

|     | 1   | 15 |
|-----|-----|----|
|     | 2   | 10 |
|     | 3   | 15 |
| 70% | 4   | 15 |
|     | 5   | 15 |
| 30% | 2 3 | 30 |

| 100 | 60 | 6069 | 7079 | 8089 | 90 |
|-----|----|------|------|------|----|
|     |    |      |      |      |    |

( )

|    |     |  | 2017 |
|----|-----|--|------|
|    |     |  |      |
|    |     |  |      |
| 90 | 100 |  |      |
| 80 | 89  |  |      |
| 70 | 79  |  |      |
| 60 | 69  |  |      |

| 0 59   |  |
|--------|--|
| V U    |  |
| 90 100 |  |
| 80 89  |  |
| 70 79  |  |
| 60 69  |  |
| 0 59   |  |

( )

70% 30%

| 1 | 20% | 10% |
|---|-----|-----|
| 2 | 20% | 20% |
| 3 | 20% | 20% |

| <br> |     |
|------|-----|
|      |     |
|      |     |
|      |     |
|      |     |
| 100  | 100 |

| 2 | 2 |  | 0 |
|---|---|--|---|
| 3 |   |  | 0 |
| 4 | 4 |  | o |

\_\_\_\_

**«** 

2020 5 2020 5

|           | ( ) | ( | ) 🗹 |   |
|-----------|-----|---|-----|---|
| $\square$ |     |   |     |   |
|           |     |   |     |   |
|           | 3   |   |     | 3 |
|           |     |   |     |   |
|           |     |   |     |   |
|           |     |   |     |   |

0

`

;

T , , , ,

- - - ,

- , , ...T - , ...T - ...

,

[ ]

•

;

| ` |         |
|---|---------|
|   |         |
| 0 | • • • • |
|   |         |
|   |         |
|   | `       |
|   | 0       |
|   |         |
| 0 |         |
| ` |         |
|   |         |
|   | ٥       |
| 0 |         |
| , |         |
|   |         |
| • | ` ` `   |
|   | 0       |

|      | 1 | 2 | 3 | 4 |
|------|---|---|---|---|
| 6.1  |   |   |   |   |
| 7.1  |   |   |   |   |
| 7.2  |   |   |   |   |
| 8.2  |   |   |   |   |
| 9.1  |   |   |   |   |
| 9.2  |   |   |   |   |
| 10.1 |   |   |   |   |

| 0    |  |
|------|--|
|      |  |
| 11.1 |  |
| •    |  |
|      |  |

•

1.

2.

3.

4.

4.

5.

6.

7.

•

8. ( , , ) (

, )

9.

`

| 3  | √        |          |   |          |
|----|----------|----------|---|----------|
| 4  | √        |          | √ |          |
| 5  | <b>√</b> |          |   |          |
| 6  | <b>√</b> |          |   |          |
| 7  | √        |          | √ |          |
| 8  | √        | √        | √ | √        |
| 9  | √<br>√   | <b>√</b> | • | <b>√</b> |
|    |          | <b>√</b> |   | <b>√</b> |
| 10 | √        |          |   |          |
| 11 | √        | √        |   | √        |
| 12 | √        | √        | √ |          |
| 13 | √        | √        | √ | √        |
| 14 | √        | √        | √ | √        |
|    |          |          |   |          |

3:3:4

| 1/3 | 5   | 4 5 | 2 3 | 1   |
|-----|-----|-----|-----|-----|
|     |     |     |     |     |
|     |     |     |     |     |
|     |     |     |     |     |
|     | 60% | 70% | 80% | 90% |
|     |     |     |     |     |

[ ]

2, (3)» 2013

3、 . 《 》 2009

4, . 《 》 2008

|   |          |     |    |     |   |          |   | _   |   |      |   |
|---|----------|-----|----|-----|---|----------|---|-----|---|------|---|
|   | «        |     |    |     |   | <b>»</b> |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
| / | 20       | )20 | 4  |     |   |          |   |     |   | 2020 | 5 |
|   |          |     |    |     |   |          |   |     |   |      |   |
| ` |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     | ] |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     | (  | ) 🗆 |   |          | ( | ) 🗹 |   |      |   |
|   | <b>V</b> |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     | 32 |     |   |          |   |     |   | 32   | 2 |
|   |          |     |    |     | 1 |          |   | -   |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |
|   |          |     |    |     |   |          |   |     |   |      |   |

[ ]

} . T -. T -; B .-Т

0 0

•

o 0

o

о о

|   | ,   |
|---|-----|
|   |     |
|   |     |
|   | 0   |
|   |     |
|   | `   |
|   | `   |
|   |     |
|   |     |
|   |     |
|   |     |
|   |     |
| 0 | 0   |
|   |     |
|   |     |
|   |     |
| • |     |
|   |     |
|   |     |
| 0 | 0   |
|   |     |
|   |     |
|   |     |
|   | ;   |
|   | ,   |
|   |     |
|   |     |
|   |     |
|   | • • |
|   |     |
|   |     |
|   |     |
|   | 0   |
|   |     |
|   |     |
|   |     |
|   |     |
|   |     |
| ` |     |
| 0 |     |
|   |     |
|   |     |
|   | ,   |
|   |     |
|   | 0   |

[ ]

|     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
|-----|---|---|---|---|---|---|---|---|---|
| 4.2 | Н |   |   |   |   |   |   |   |   |

| 4. 3       | н |   |   |   |   |   |   |   |
|------------|---|---|---|---|---|---|---|---|
| 4. 4       |   | Н |   |   |   |   |   |   |
| 6. 2       |   |   | н |   |   |   |   |   |
| 0          |   |   |   |   |   |   |   |   |
| 8.2        |   |   |   | н |   |   |   |   |
| 0          |   |   |   |   |   |   |   |   |
| 9. 2       |   |   |   |   | н |   |   |   |
| 9.3        |   |   |   |   |   | н |   |   |
| 10. 2<br>K |   |   |   |   |   |   | М |   |
| 12. 2      |   |   |   |   |   |   |   | н |

1. ;

2.

3. 【 】

0

[ ]

•

[ ]

1. ;

1 1. 2. 3. 4. 1 1 1 1. 2.

674

3.

4. 1 1 1 (485, 232, , ) 1. 2. 1 (485, 232, , ) M 1 

o

 $\mathbf{M}$ 

1.

2...

[ ]

0

r j

1.

2.

3. 4. ] [ ] ( 0 )。 1 PSASP 2 3 4

|   | Г | Т |   | 1 |
|---|---|---|---|---|
|   |   |   | ` |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   | _ |   |
|   |   |   | 0 |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   | 0 |   |
|   |   |   | 0 |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
| 5 |   |   | , |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   | 0 | o |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
| 6 |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   | ` |
|   |   |   |   | o |
|   |   |   | _ |   |
|   |   |   | 0 |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
| 7 |   |   |   |   |
|   |   |   |   | _ |
|   |   |   |   | 0 |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
| 8 |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   | ō |

| 4 | ,    | 6  |   | 6  |
|---|------|----|---|----|
| 5 |      | 6  |   | 6  |
| 6 |      | 2  |   | 2  |
| 7 |      | 2  |   | 2  |
| 8 |      | 4  |   | 4  |
| · |      | 32 |   | 32 |
| ľ | 1    | 0  | 5 | 0% |
|   | 50%。 | ۰  |   |    |

2 3 4 5 6 (50%) 

| ≪_          |              |                     |   |          |
|-------------|--------------|---------------------|---|----------|
| , ,         | `            |                     |   |          |
| 2020. 04    |              |                     | 2 | 2020. 05 |
| `           |              |                     |   |          |
|             |              |                     |   |          |
| Comprehensi | ve Experimen | ıt                  |   |          |
| sd01931790  |              |                     |   |          |
|             |              |                     |   |          |
|             |              | $\Box$ $\checkmark$ |   |          |
|             |              |                     |   |          |
|             |              |                     |   |          |
|             |              |                     |   |          |
| 2           |              | 64                  |   | 64       |

» 、 «

«

》、《

,

° °

, p

**»** 

| <br> |   |   |
|------|---|---|
|      |   |   |
|      | ` |   |
|      |   |   |
|      |   |   |
| 0    |   | 0 |

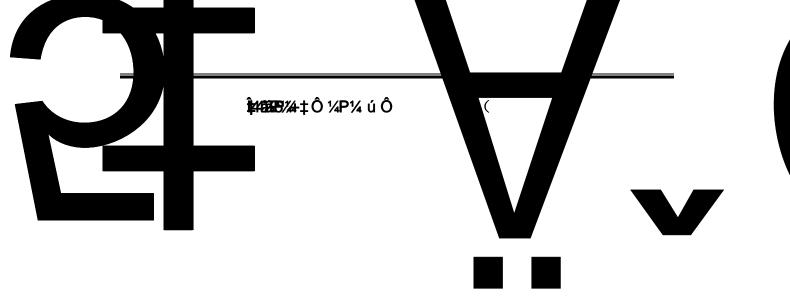
[ ]

|      | 1 | 2 | 3 | 4 | 5  |
|------|---|---|---|---|----|
| 4.2  |   |   |   |   |    |
| 4. 3 | Н |   |   |   |    |
| 4.4  |   |   |   |   |    |
| 5. 1 |   |   |   |   |    |
|      |   |   |   |   |    |
| 5. 2 |   |   |   |   |    |
|      |   | М |   |   |    |
| 5. 3 |   |   |   |   |    |
|      |   |   |   |   |    |
|      |   |   |   |   |    |
| 8.2  |   |   | M |   |    |
| o    |   |   | M |   |    |
| 9. 1 |   |   |   |   |    |
| 9. 2 |   |   |   | Н |    |
| 10.1 |   |   |   |   | 14 |
|      |   |   |   |   | М  |
|      |   |   |   |   |    |
| 0    |   |   |   |   |    |

`

1.

2.


`

(4 ) 1、2、3、4、5.¼ 5.集配配配配

1、2、3、4、5¾ 5.½ 4√2 4√4 13⁄4
3+ • ö)3 1• +ej Ï)öÊ+e) i Š!Ü• +ej Ï)öÊ+¢ß i Š!Ü} Â3��¶P

ľ 1 1, 2, 3, 4, 5. 1 PS-7G Matlab ) 1 PS-7G 、WDT-IIIC 1 Matlab Simulink 0 (4) ] 1, 2, 3, 4, 5.

[ ]



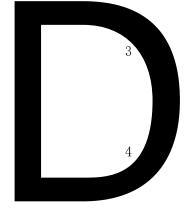
## PASSE FILE PROVIDE DATE OF THE DATE OF THE

> 1 1 2 3 = ( ). 4 = ( ). 5 ľ 1 1 > (4 ) 1

SPWM , SVPWM

1, 2, 3, 4, 5.

1 SPWM, , SVPWM 1 1 DSP 0 0 DSP (4) 1 1, 2, 3, 4, 5. 1 1, (1) (2) (3) 2,


1, 2, 1 Boost DC-DC DSP DSP Buck (4 ) 1 1, 2, 3, 4, 5. Buck PWM 。 DSP PWM A/D DSP 1、Buck SimCoder 2. Buck SimCoder DSP TI F28335 C . TI CCS 3, [ 1

>

O

PTS-3000 1 [ TI CCS DSP PSIM  ${\tt SimCoder}$ (8 ) 1 1, 2, 3, 4, 5. 1 1. 2. 3. 4. 1

o



5

RCS-901A

6

7

NÈÈ ) «3+5 0c1,′ 4

WîP¼p



| 13 |  |   | ō |   |
|----|--|---|---|---|
| 14 |  |   | o |   |
| 15 |  | o |   | 0 |

`

|          |  | 4  |  |  |  |  | 4  |
|----------|--|----|--|--|--|--|----|
|          |  | 4  |  |  |  |  | 4  |
|          |  | 8  |  |  |  |  | 8  |
|          |  | 4  |  |  |  |  | 4  |
|          |  | 4  |  |  |  |  | 4  |
|          |  | 8  |  |  |  |  | 8  |
| `        |  | 4  |  |  |  |  | 4  |
|          |  | 4  |  |  |  |  | 4  |
|          |  | 4  |  |  |  |  | 4  |
| DSP Buck |  | 4  |  |  |  |  | 4  |
|          |  | 8  |  |  |  |  | 8  |
|          |  | 8  |  |  |  |  | 8  |
|          |  | 64 |  |  |  |  | 64 |

, [ ] 

| <b>T</b> | 1 | 50%  | 50%  |
|----------|---|------|------|
| •        | 4 | 0070 | 0070 |

|   |   | 1   | 50 |     |
|---|---|-----|----|-----|
|   |   | 2   | 20 |     |
| ( | ) | 3   | 10 | 100 |
|   |   | 4   | 10 |     |
|   |   | 5   | 10 |     |
|   |   | 1   | 50 |     |
|   |   | 2   | 20 |     |
| ( | ) | . 3 | 10 | 100 |
|   | , | 4   | 0  |     |
|   |   | 5   | 20 |     |

|       |       | (90-100%) | (80-90%) | (70-80%) | (60-70%) | (<60%) |
|-------|-------|-----------|----------|----------|----------|--------|
|       |       |           |          | 5-10     | 10-20    |        |
|       | (10   | o         | o        | 0        | o        | o      |
|       | (20 ) | •         | o        | o        | o        |        |
| (50 ) | (10 ) |           | 0        | ۰        | ۰        |        |
|       | (10 ) | ۰         | o        | o        |          | 0      |
| (50 ) | (10 ) |           |          |          | 0        |        |

|       | 0 | ۰ |   |   |   |
|-------|---|---|---|---|---|
|       |   |   | 0 | 0 | 0 |
|       |   |   |   |   |   |
|       |   |   |   |   | ٥ |
|       | 0 | 0 |   |   |   |
| (10 ) |   |   |   | 0 |   |
| (10 ) |   |   |   |   |   |
|       |   |   |   |   |   |
|       |   |   |   |   |   |
| (15 ) |   |   |   |   |   |
| (15 ) | 0 |   | 0 |   | o |
|       |   | 0 |   | 0 |   |
|       |   |   |   |   |   |
|       |   |   |   |   |   |
|       | ۰ |   |   |   | 0 |
| (10 ) |   | 0 | 0 | 0 |   |
|       |   |   |   |   |   |
| (- )  |   |   |   |   |   |
| (5)   | 0 | 0 | 0 | 0 | 0 |

1 1. 2018。 2. 2017。 3. 2018。 4. 1 1. 2008。 2. 2009。 3. 2007。 4. 5 2009 5 5. ( 3 ) 2004 ( 2 ) 2010。 6.

\_\_\_\_

(A ) »

2020 4 2020 5

D P A

01931620



- - -

| ,            | , -                                     |
|--------------|-----------------------------------------|
|              |                                         |
|              | ,                                       |
|              |                                         |
| ,            | , , , , , , , , , , , , , , , , , , , , |
|              | - ,                                     |
| - A          | T                                       |
|              | -                                       |
| ,            |                                         |
| ,            | -                                       |
|              | •                                       |
| T            | ,                                       |
| _            |                                         |
| <del>-</del> | ,                                       |
| ,            |                                         |
|              |                                         |
| `            |                                         |
| >            |                                         |
| ,            |                                         |
|              |                                         |
| >            |                                         |
|              |                                         |
|              |                                         |
|              | 0                                       |
|              | ,                                       |
|              |                                         |
|              | •                                       |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              | `                                       |
|              |                                         |
|              |                                         |
|              | ·                                       |
|              |                                         |
|              |                                         |
|              |                                         |
|              | 0                                       |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |
|              |                                         |

|  | 0 |
|--|---|
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |
|  |   |

[ ]

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |
|   |   |   |   |   |

1)

2)

3)

4)

5)

|   |     | ( )    |
|---|-----|--------|
| 1 |     | 0. 125 |
| 2 |     | 1.875  |
| 3 | · · | 2      |
| 4 |     | 0.5    |
| 5 |     | 0.5    |
|   |     | 5      |

1.

2.

3.

4.

K [1] . « » ( 2 ) 2005 [2] . « » ( 3 ) 2018

| 2.2 | 1 | o | 100 | 100 |
|-----|---|---|-----|-----|

(B ) »  $\langle\!\langle$ 2020 2020 5 4 / )  $\checkmark$ V 2 (B ) » . S -. T В

| _ [ ] |   |   |   |   |   |
|-------|---|---|---|---|---|
|       | 1 | 2 | 3 | 4 | 5 |
| 2.4   |   |   |   |   |   |
| o     |   |   |   |   |   |
| 3.2   |   |   |   |   |   |
| ( )   |   |   |   |   |   |
| 3.3   |   |   |   |   |   |
| 3.3   |   |   |   |   |   |
| 9.1   |   |   |   |   |   |
| 9.2   |   |   |   |   |   |
| 10.1  |   |   |   |   |   |
| ,     |   |   |   |   |   |
| `     |   |   |   |   |   |
|       |   |   |   |   |   |
| 12.2  |   |   |   |   |   |
|       |   |   |   |   |   |
| 0     |   |   |   |   |   |

В

)

)

)

2.4 1 50

60%

|          |   |   |   | 0 |
|----------|---|---|---|---|
|          |   | 0 | , | ` |
|          |   |   | • |   |
|          |   |   | 0 | • |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          | 0 | 0 | 0 | ٥ |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   | ` |   |   |
|          |   |   | ` | ` |
|          |   |   |   |   |
|          | 0 | 0 |   |   |
|          |   |   | 0 |   |
| <b>T</b> | • |   |   | 0 |

| • |   |      |      |      |
|---|---|------|------|------|
|   |   |      |      |      |
|   |   |      |      |      |
|   | 1 | 50%  |      |      |
|   | 2 | 50%  | 50%  |      |
|   | 3 |      |      | 50%  |
|   | 4 |      | 50%  |      |
|   | 5 |      |      | 50%  |
|   |   | 100% | 100% | 100% |

```
      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
      J

      I
```

(C ) » 2020 4 2020 5 ( )  $\checkmark$  $\checkmark$ 2

•

· - - -

- . S

-- ,

· - - - -

- T - - - ,

,

1 ,

| ľ     |   |   |   |   |   |
|-------|---|---|---|---|---|
|       | 1 | 2 | 3 | 4 | 5 |
| 2.4   |   |   |   |   |   |
| 3.2   |   |   |   |   |   |
| 3.3 / |   |   |   |   |   |
| 8.2   |   |   |   |   |   |
| 9.1   |   |   |   |   |   |
| 9.2   |   |   |   |   |   |
| 10.1  |   |   |   |   |   |
| 10.3  |   |   |   |   |   |

| 11.2 | ( | ) |  |  |  |
|------|---|---|--|--|--|
|      |   | 0 |  |  |  |
| 12.1 |   |   |  |  |  |
|      |   | 0 |  |  |  |

•

>

0

PTS

•

1)

2)

PTS

3)

0

4) PI

/

) 。

5)

0

6)

٥

7)

PPT .

`

|   |    | ( ) |
|---|----|-----|
| 1 | •  | 1   |
| 2 |    | 1   |
| 3 |    | 2   |
| 4 | PI | 2   |
| 5 |    | 2   |
| 6 |    | 3   |
| 7 |    | 2   |
| 8 |    | 1   |
|   |    | 14  |

`

1.

0

3. PSIM MATLAB

PTS .

|   |   | , | `` |
|---|---|---|----|
|   | 0 | · |    |
| o |   | o | o  |
|   |   |   |    |
|   |   |   |    |
|   | o |   |    |
|   | 0 | • | •  |
|   |   |   |    |
|   |   | ` | `  |
|   |   | 0 | •  |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
| 0 | 0 | 0 | 0  |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   |   |    |
|   |   | ` | `  |
|   |   |   |    |
| 0 | o |   |    |
|   |   | o |    |
|   |   |   | 0  |

| 1 | 50% |     |     |
|---|-----|-----|-----|
| 2 | 50% | 50% |     |
| 3 |     |     | 50% |
| 4 |     | 50% |     |
| 5 |     |     | 50% |

|       |       | 100% | 100% | 100%  |  |  |
|-------|-------|------|------|-------|--|--|
|       |       |      |      |       |  |  |
| ľ     | 1     |      |      |       |  |  |
| •     |       |      |      |       |  |  |
|       | 2021。 |      |      |       |  |  |
| ľ     | 1     |      |      |       |  |  |
| (1)   |       |      |      | 1999。 |  |  |
| (2)   | `     |      |      |       |  |  |
| 2002。 |       |      |      |       |  |  |
| (3)   |       |      |      | 2014。 |  |  |
| (4)   |       | (    | 5 )  | 2009。 |  |  |

(D) »

2020 4 2020 5

| (D)      |   |   |  |  |   |  |  |
|----------|---|---|--|--|---|--|--|
| D P I    | ) |   |  |  |   |  |  |
|          |   |   |  |  |   |  |  |
|          |   |   |  |  |   |  |  |
| 01931640 |   | 2 |  |  |   |  |  |
| 2        |   |   |  |  |   |  |  |
| 2        |   |   |  |  | 2 |  |  |
| (D )     |   |   |  |  |   |  |  |
| `        |   |   |  |  |   |  |  |
|          |   |   |  |  |   |  |  |

( ) (D)

0

0

- - -

, . I

| <br>, , | ٥   |
|---------|-----|
|         |     |
|         | > , |
|         |     |
| o       |     |
|         | o   |
|         |     |
|         | `   |
|         |     |
| 0       | 0   |
|         |     |
| o       | 0   |
|         |     |
| 0       | 0   |
| ,       |     |
|         | 0   |

| _ [ ]    |   |   |   |   |   |
|----------|---|---|---|---|---|
|          | 1 | 2 | 3 | 4 | 5 |
| 2.4      |   |   |   |   |   |
| o        |   |   |   |   |   |
| 3.2      |   |   |   |   |   |
| ( ), ( ) |   |   |   |   |   |
| 3.3      |   |   |   |   |   |
| , , ,    |   |   |   |   |   |
| 9.1      |   |   |   |   |   |

9.2

10.1

| 2 | 3. 75 |
|---|-------|
| 3 | 4     |
| 4 | 2     |
| 5 | 2     |
|   | 12    |

1.

2. 3.

4.

| 1 |  |   |
|---|--|---|
| 2 |  | , |
| 3 |  |   |

( )

| 2.2 | 1 | 100 |     |
|-----|---|-----|-----|
| 3.1 | 2 | 100 | 100 |
| 9.1 | 3 |     |     |

|            |      |    |     |          |     |   |   |    |             | - |
|------------|------|----|-----|----------|-----|---|---|----|-------------|---|
|            | 12.2 | 5  |     |          |     | ` |   |    |             |   |
|            | 10.1 | 4  |     |          | `   |   |   |    |             |   |
|            | ı    | -1 |     |          |     |   |   |    |             |   |
|            |      |    |     |          |     |   |   |    |             |   |
|            |      |    |     |          |     |   |   |    |             |   |
|            |      |    |     |          |     |   |   |    |             |   |
|            |      |    | 0   |          |     |   | • |    | •           |   |
|            |      |    |     |          |     |   |   |    | `           |   |
| ( )        | 0    |    | 0   |          | C   | D | 0 |    |             |   |
|            |      |    | 1 2 |          |     |   |   |    |             |   |
| [1]<br>[2] | . «  |    |     | » (<br>» | 2 ) | ) |   | 20 | 002<br>2003 |   |

(E ) » 2020 2020 5 ( ) 🗹  $\checkmark$ 2 ( 1 E E - ) H -V COMSOL

`

|   |   | 0     |
|---|---|-------|
|   |   |       |
|   | 1 | 0     |
|   | ] | 1-5.  |
|   |   |       |
|   |   | 0     |
|   |   |       |
|   |   | •     |
|   |   |       |
|   |   | 0     |
|   |   |       |
|   |   | 0     |
| [ | ] | ` ` ` |
| ľ | 1 | 1,    |
|   |   | 0     |
|   |   | 2,    |
|   |   | 0     |
|   |   | 3,    |
|   |   | •     |
|   |   | 0     |
|   |   | 4,    |
|   |   |       |
|   |   | •     |
|   |   | 5,    |
|   |   | •     |
|   |   |       |
|   |   | 6,    |
|   |   |       |
|   |   | 0     |

| ] |    |            |
|---|----|------------|
| I |    | 1-5 comsol |
|   |    | comsol     |
|   |    | •          |
|   |    | comsol     |
|   |    |            |
|   |    | 0          |
| ] |    |            |
| ] | 1, | 1 1        |
|   |    |            |
|   |    | 0          |
|   | 2, | comsol     |
|   |    | 0          |
|   | 3, | comsol .   |

| 4, |   |
|----|---|
|    | 0 |
|    |   |

`

|   |       | ( )   |
|---|-------|-------|
| 1 |       | 0. 25 |
| 2 | ( , ) | 3. 75 |
| 3 |       | 4     |
| 4 |       | 2     |
| 5 |       | 2     |
|   |       | 12    |

•

( )

` `

M 

| 7  |   | С |              | 0 |
|----|---|---|--------------|---|
| 8  | С |   | ۰            | • |
| 9  | С |   | 3 (©AQÑI-'Aî | • |
| 10 | С |   | 3 ∰⊙         | • |
| 11 | С |   | ,            | 0 |

Ĭ**t** 63 3 **6**36**3**8**3**8**1**â € RCda! T•à !gVaT\$ I "'""Ó‡ 9 ab@Vv Rø\$ P %qY3" J¸ Ï

|          |   |     |   |     | <u> </u> |     | I |  |
|----------|---|-----|---|-----|----------|-----|---|--|
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     | , |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          | `   |   |  |
|          |   | 0   |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     | 0 |     |          |     |   |  |
|          |   |     |   |     |          | 0   |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     | ٥ |  |
| <u> </u> | ] |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          |   |     |   |     |          |     |   |  |
|          | 1 | 50% |   |     |          |     |   |  |
|          | 2 | 50% |   | 50% |          |     |   |  |
|          | 3 |     |   |     |          | 50% |   |  |
|          | 4 |     |   | 50% |          |     |   |  |

| ľ | 1 |     |   |     |      |   |
|---|---|-----|---|-----|------|---|
|   |   |     |   | 0   |      | ` |
|   | ` | `   | 0 |     |      | 0 |
|   |   | 40% |   | 40% | 20%。 |   |
|   |   | _   |   |     |      |   |

100%

50%

100%

5

100%

|     | 1       |   |     |    | 1   |
|-----|---------|---|-----|----|-----|
| 40% | 2.4     | 1 | C   | 50 | 100 |
| 40% | 3.2/3.3 | 2 | 0   | 50 |     |
|     | 10.1    | 4 | 0   | 50 | 100 |
| 20% | 9.1/9.2 | 3 | • • | 50 | 100 |
|     | 3.2/3.3 | 2 | 0   | 50 | 100 |
| 40% | 12.2    | 5 | •   | 50 | 100 |

[ ]

| <b>[</b> | 1 |   |   |       |
|----------|---|---|---|-------|
|          |   |   |   | (<60) |
|          |   |   |   |       |
|          |   |   |   | o     |
|          | 0 | 0 | o |       |
|          |   |   |   |       |
|          |   |   |   | 0     |
|          |   | 0 |   |       |

| o |   | 0 |   |
|---|---|---|---|
| ` | ` | , | o |
| 0 | o | o |   |

1 50% -- -- 50%
3 -- 50% -- 50%
4 -- 50% -- 50%
5 -- -- 50%
100% 100% 100%

[ ] 2009

|          | <b>《</b>  |      | ( | )        | _》 | _        |      |   |  |
|----------|-----------|------|---|----------|----|----------|------|---|--|
| /        | 202       | 20 4 |   |          |    |          | 2020 | 5 |  |
| •        |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           | (    | ) |          | (  | ) 🗹      |      |   |  |
|          | $\square$ |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   |          |    | 2        |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
|          |           |      |   | `        |    |          |      |   |  |
|          |           |      |   |          |    |          |      |   |  |
| `        |           |      |   |          |    |          |      |   |  |
| ľ        | ]         |      |   |          |    |          |      |   |  |
| <b>(</b> | 4         |      |   | <b>»</b> |    |          |      |   |  |
|          |           |      | « |          |    | <b>»</b> |      |   |  |
|          |           |      |   | 0        |    |          |      |   |  |

o

- " - - ", - -

- . S - - . T - ,

. S

,

[ ] 1 ,

2

0

3 4

,

5

|      | 1 | 2 | 3 | 4 | 5 |
|------|---|---|---|---|---|
| 2.4  |   |   |   |   |   |
| 3.2  |   |   |   |   |   |
| 3.3  |   |   |   |   |   |
| 9.1  |   |   |   |   |   |
| 9.2  |   |   |   |   |   |
| 10.1 |   |   |   |   |   |
| 12.2 |   |   |   |   |   |

`

[ ]

1.

`

ľ J

1.

0

[ ]

ľ

[ ]

ľ

° 1

[ ]

,

.

**《** 

0

•

| 1 |  |  |
|---|--|--|
| 2 |  |  |
| 3 |  |  |
| 4 |  |  |

`

[ ]

0

• •

40% 60%.

|     | 2.4     | 1 | • | 50 | 100 |
|-----|---------|---|---|----|-----|
| 60% | 3.2/3.3 | 2 | 0 | 50 |     |
|     | 10.1    | 4 | o | 50 | 100 |
| 20% | 3.2/3.3 | 2 | o | 50 | 100 |
|     | 9.1/9.2 | 3 | • | 50 | 100 |
| 20% | 12.2    | 5 | 0 | 50 | 100 |

[ ]

| ľ | 1 |  |  |
|---|---|--|--|

| 1 | 50%  |      |
|---|------|------|
| 2 | 50%  | 50%  |
| 3 |      |      |
| 4 |      | 50%  |
| 5 |      |      |
|   | 100% | 100% |

【 】
1. 《 - 》
2. MATLAB/S ISBN 9787111575931

**《** ( ) » **(** )**)** 2017 4 2017 5 2020 2020 5 ( ) T (D ) G ( ),  $\checkmark$  $\checkmark$ 384 8 12 ( ) ( ) G

739

. I

·

|     | T                 |
|-----|-------------------|
|     | 1.4               |
|     | 1.7               |
| 0   | 。 (H)             |
|     | 2.4               |
|     | 。 (H)             |
| 0   | 。 (II)            |
|     | 3.2               |
| ,   |                   |
|     | ( ), ( )<br>. (H) |
|     | 3.3               |
|     | (II)              |
| 0   | 。 (H)             |
| ,   |                   |
|     | 4.                |
|     | 4.1               |
|     | (H)               |
| ,   |                   |
| 0   |                   |
|     | 5.3               |
| , , |                   |
|     | ()                |
| 0   | 。 (H)             |
| `   | 6.2               |
| ) ) |                   |

|         | , , ,       |
|---------|-------------|
|         | 。 (M)       |
|         | 3 (2)27     |
| o       |             |
|         | 7.1         |
|         | 0           |
|         | (M)         |
| >       | 7.2         |
| •       |             |
|         | (M)         |
|         | 10.1        |
|         |             |
| `       | ·           |
|         | o           |
|         | (H)         |
| `       | 10.2        |
|         |             |
| ۰       | (H)<br>10.3 |
|         |             |
|         | 。 (H)       |
| `       |             |
|         | 12.2        |
|         | 。 (H)       |
| 0       |             |
| H—— M—— | 1           |

( ( 3000 2000 ( ) ) (1) (2) ο、 (4) )





ŒVŒÈ 9ÅAÑAÎÄ·Aể'

" @ Ř ŚPO DZE ÊNĖŘ - ÄAî 7 800 OH-ÂÄÅF PV® JAŘEŘ ŘOBK NĚP NĚF.

i È ÄO€ QÊ,′ .D >QÊ,′ OEÑAÎ+OJ MIMÂOOMÈÓ® <Q ÈBOMBÈSI

2. 3.

| 5 | 1  | 1  |
|---|----|----|
|   | 14 | 14 |

( ) ( ) 40% 60%。 ( ) ) ( ) 》、《 ) ( ) XXXX **»** ( ( 5 ( ) ( ) (1) (2) (3)

|   | `   |   | ),      | , , ( |
|---|-----|---|---------|-------|
| • | (4) |   |         |       |
| ( | (5) |   |         |       |
| « | (6) |   | 1 ( ) 1 | 1 ( ) |
|   |     |   |         |       |
|   |     |   | 12 15   |       |
| 1 | (   | ) | 9 12    | 0     |
|   |     |   | 0 9     | , ,   |
|   |     |   | 12 15   |       |
| 2 | (   | ) | 9 12    | •     |
|   |     |   | 0 9     | 0     |
|   |     |   | 12 15   | 0     |
| 3 | (   | ) | 9 12    | 0     |
|   |     |   | 0 9     |       |

|   |     | 12 15 | , /     |
|---|-----|-------|---------|
| 4 | ( ) | 9 12  | •       |
|   |     | 0 9   | ,       |
|   |     | 8 10  | , , , , |
| 5 | ( ) | 6 8   |         |
|   |     | 0 6   | •       |
|   |     | 4 5   | •       |
| 6 | ( ) | 3 4   | 0       |
|   |     | 0 3   |         |
|   |     | 4 5   | •       |
| 7 | ( ) | 3 4   | 0       |
|   |     | 0 3   | •       |
| 8 | ( ) | 12 15 |         |
|   |     | 9 12  | , , ,   |

|    |              |     | `      |       |          | `   |
|----|--------------|-----|--------|-------|----------|-----|
|    |              |     |        | 0     |          |     |
|    |              | 0 9 | ,      | `     |          | `   |
|    |              |     | •      |       | •        |     |
|    |              | 4 5 | o      | `     |          |     |
| 9  | ( )          | 3 4 | o      |       | `        |     |
|    |              | 0 3 |        |       | ,        | 0   |
| (  | ( )          | ( " | ")     |       |          |     |
|    |              |     | (      | )     |          | ( ) |
|    |              |     |        | 13-14 | 0        |     |
|    |              |     | 0      |       |          |     |
|    |              |     |        | 0     |          | 3   |
|    |              |     |        |       | 0        |     |
|    | (            | )   |        | "     | <i>"</i> |     |
|    |              |     |        | (     | ) , 1-3  | /   |
| `  |              |     | 3      | 1     |          | 0   |
|    |              |     | 3      |       | 1        |     |
|    | 1            |     | O      |       |          |     |
|    |              |     |        |       |          |     |
| 1. |              |     | ( )    |       |          |     |
| 2. | •            |     | 10-15  |       |          | ( ) |
| ,  | ( <b>1</b> ) |     |        |       |          |     |
|    | (1)          | , , |        |       |          |     |
|    | (2)          |     |        |       |          |     |
|    | (3)          | ( ) | `      | `     | `        |     |
| (  | (4)          | ( ) |        |       |          |     |
| 3. | `            |     | ° 5–10 |       | 3-5      |     |

(1)

(2)
,
(3)
(4)
,

4,

( ) ,

5,

2 2

2 ( )

|   | 12 15   | , / , |         |
|---|---------|-------|---------|
| 4 | 4 PPT 、 | 9 12  | •       |
|   |         | 0 9   | ,       |
|   |         | 8 10  |         |
| 5 | PPT 、   | 6 8   | , , , , |
|   |         | 0 6   | •       |
|   |         | 4 5   | 0       |
| 6 | PPT 、   | 3 4   |         |
|   |         | 0 3   | 0       |
|   |         | 4 5   | 0       |
| 7 | PPT 、   | 3 4   | 0       |
|   |         | 0 3   | 0       |
| 8 | PPT 、   | 12 15 | 0       |
|   |         | 9 12  | 0       |
|   |         | 0 9   | `       |

= 40%+ 60%.

[0, 60) [60, 70) [70, 80) [80, 90) [90, 100]

( )

|   | 40%  | 60%  |
|---|------|------|
|   |      |      |
| 1 | 15%  | 15%  |
| 2 | 15%  | 15%  |
| 3 | 15%  | 15%  |
| 4 | 15%  | 15%  |
| 5 | 10%  | 10%  |
| 6 | 5%   | 5%   |
| 7 | 5%   | 5%   |
| 8 | 15%  | 15%  |
| 9 | 5%   | 5%   |
|   | 100% | 100% |

( )

|   | 1     |     |  |
|---|-------|-----|--|
| 1 | 2 3   | 15  |  |
| 2 | 1 2 3 | 15  |  |
|   | 3     |     |  |
|   | 2     |     |  |
| 3 | 3 /   | 1.5 |  |
|   | 4 /   | 15  |  |
|   | 5     |     |  |
|   | 1     |     |  |
| 4 | 2 /   | 1.7 |  |
|   | 3 , , | 15  |  |
|   | 4     |     |  |
| 5 |       | 10  |  |
|   | 2 /   |     |  |
| 6 |       | 5   |  |
|   | 2     | 5   |  |
| 7 | 1 ,   |     |  |
|   | 2 >   | 5   |  |
|   | 2 > 3 |     |  |
| 8 |       | 15  |  |
|   | 3     | 13  |  |
|   | 4     |     |  |
| 9 | ,     | 5   |  |
|   | 2 3 . | 100 |  |
|   |       | 100 |  |

( )

| 1 | 1<br>2<br>3                             | 15  |  |
|---|-----------------------------------------|-----|--|
| 2 | 1<br>2<br>3                             | 15  |  |
|   | 3<br>1                                  |     |  |
| 3 | 3 / /                                   |     |  |
| 3 | 4 /                                     | 15  |  |
|   | 5                                       |     |  |
|   | 1                                       |     |  |
| 4 | 2 /                                     | 15  |  |
|   | 3                                       |     |  |
|   | 1                                       |     |  |
| 5 | 2 / .                                   | 10  |  |
|   | 1                                       |     |  |
| 6 | 2                                       | 5   |  |
| 7 | 1 ,                                     |     |  |
|   | 2 > 3                                   | 5   |  |
| 8 | 1 , , , , , , , , , , , , , , , , , , , | 15  |  |
|   | 1                                       |     |  |
| 9 | 2 3                                     | 5   |  |
|   |                                         | 100 |  |
|   |                                         |     |  |

3 ( , ): ( ) ( ) 40% ( ) ) 60%

> (90 ) (80-89 ) (70-79) (60-69) (60 )

(40%) +

(60%)。

|   | <b>«</b> |      |          | <b>»</b> |     |      |   |
|---|----------|------|----------|----------|-----|------|---|
| / | 202      | 20 4 |          |          |     | 2020 | 5 |
| ` | ı        |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          | (    | )        | (        | ) 🗆 |      |   |
|   |          | I    | <b>V</b> |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          | 48   |          | 48       |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          |      | `        |          | `   |      |   |
|   |          |      |          |          |     |      |   |
| ` |          |      |          |          |     |      |   |
| _ | _        |      |          |          |     |      |   |
| ľ | 1        |      |          |          |     |      |   |
|   |          |      |          |          |     |      |   |
|   |          | (    | )。       |          |     |      | • |

1 T -- . I E E  $\mathbf{C}$ . T E E - A : DC - - . T  $_{\circ}$  M

•

| _ |   |   |   |   |   |
|---|---|---|---|---|---|
| , |   | ` |   |   |   |
| 0 |   | 0 |   | , |   |
|   | ` |   |   |   | ` |
|   |   | 0 |   |   |   |
|   | ` |   | • |   |   |
| , |   |   |   |   |   |

1 2
2.3 >
2.4
4.1
4.2
12.1

( )。 « », « », « »

1 1 1. 2. 1 1 1 1 1. PWM 2. 3. 1 PWM

1 PWM PWM PWM 1 1 2 1. 2. 3. 4. 5. 1

759

1.

2.

3. –

4. – –

5.

6.

0

- -

0

•

1 2 1 1. 0 2. 3. 4. 5. 6. 7. MT

1

MT

0

- - - •

•

0

MT

0

r 1

1 2

3.

4. 5. 6. 1 ( 1 1

|    |        |   |      | o |
|----|--------|---|------|---|
| 2  |        |   | ,    |   |
| 3  | 2      | - |      | ° |
| 4  | 3      |   |      |   |
| 5  | 3      |   |      | 0 |
| 6  | 3 2    |   |      |   |
| 7  | 4<br>1 |   | `    | , |
| 8  | 4 2    | , |      | o |
| 9  | 6 3    |   | 6-13 | , |
| 10 | 6<br>5 |   |      | ` |
| 11 | 6      |   | ( )  | 0 |

| 12 | 7<br>6 |  |       | o | ` |   |
|----|--------|--|-------|---|---|---|
| 13 | 9      |  | ,     |   |   | o |
| 14 |        |  | 1) 2) | ` | • |   |

`

| 1 | 1 |   |    |  |  |   |    |
|---|---|---|----|--|--|---|----|
| 2 | 2 |   |    |  |  | 1 |    |
| 3 | 3 |   |    |  |  | 1 |    |
| 4 | 4 | , |    |  |  |   |    |
| 5 | 6 |   |    |  |  | 1 |    |
| 6 | 7 |   |    |  |  | 1 |    |
| 7 | 9 |   |    |  |  | 1 |    |
|   | • |   | 43 |  |  | 5 | 48 |

[ ]

· ` `

。 。 20%

80%。

[ ]

| ` | ` | ` | ` |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   | o |   |

[ ]

| 35 | 15 | 50 |
|----|----|----|
| 15 | 15 | 30 |
| 10 | 10 | 20 |

| 60 | 40 | 100 |
|----|----|-----|
|    |    |     |

**[** ]

| 1   | 0  | 0  | 0   |
|-----|----|----|-----|
| 2   |    |    |     |
|     |    |    |     |
| 3   | 20 | 14 | 34  |
|     | 20 | 11 | 01  |
| 4 , |    |    |     |
|     |    |    |     |
| 6   | 16 | 14 | 30  |
|     |    |    |     |
| 7   | 12 | 6  | 18  |
|     |    |    |     |
| 9   |    |    |     |
|     | 12 | 6  | 18  |
|     |    |    |     |
|     | 60 | 40 | 100 |

`

1. (4)

2009.

2. . . . 1995.

3. . 2008.

4. . . . . . . . 1999.

5 . 2002 .

**《 》** 2020 2020 5 4 Electrical machine design sd01930230  $\checkmark$  $\checkmark$ ( ) ( « **»** 

0

[ ]

|     | 1 | 2 | 3 |
|-----|---|---|---|
| 1.3 | Н |   |   |
| 3.2 |   |   | Н |
| 6.2 |   | Н |   |

.

1.

2. 《 》、

•

3.

0

r 1

1 1. ;

2. 3. 1 1 1 1, 2 3 1. ( 1, 3) 2. ( 1, 2) 3. ( 3)。

772

>

r )

o

>

•

•

[ ]

1, 2 3

2. ( 2)

3. ·

2)

0

r 3

0

0

o

0

[ ] 1, 2 3

1. ( 1, 3)

2.

2)

3.

。( 1、3) 【 】

•

0

ľ J

1、3

1. ( 1)

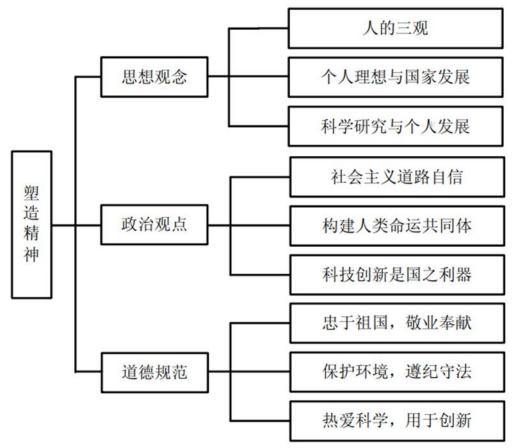
2.

( 1, 3)

o

[ ]

· ·


T 1, 3

1 1, 2, 3 1. ( 1, 3) 3. ( 1、3) 3. ( 2)。 ľ 1 0 **T** 3

`

| 1  | 1      |   | •        |
|----|--------|---|----------|
| 2  | 1      |   | <i>"</i> |
| 3  | 2 3    | 0 | 0        |
| 4  | 2<br>4 |   | 0        |
| 5  | 3 2    |   | •        |
| 6  | 3      |   |          |
| 7  | 4<br>1 |   | •        |
| 8  | 5<br>1 |   | 0        |
| 9  | 5<br>7 |   | 0        |
| 10 | 6<br>1 |   | 0        |
| 11 | 6<br>1 |   | o        |
| 12 | 7<br>1 |   | 0        |
| 13 | 10 2   |   | 0        |

| 14 | 10<br>4 |  | 0 |
|----|---------|--|---|
| 15 | 10<br>5 |  | 0 |
| 16 | 10<br>6 |  | 0 |



| 1 | 1 | 3 |  |  |  | 3 |
|---|---|---|--|--|--|---|
| 2 | 2 | 8 |  |  |  | 8 |
| 3 | 3 | 5 |  |  |  | 5 |

| 4 | 4  | 4  |  |  |  | 4  |
|---|----|----|--|--|--|----|
| 5 | 5  | 3  |  |  |  | 3  |
| 6 | 6  | 2  |  |  |  | 2  |
| 7 | 7  | 2  |  |  |  | 2  |
| 8 | 10 | 5  |  |  |  | 5  |
|   |    | 32 |  |  |  | 32 |

r 1

。 。 30%

|   | 70%。 |     | 0  |     |
|---|------|-----|----|-----|
|   |      |     |    |     |
|   |      |     |    |     |
|   |      | 1   | 45 |     |
| ( | )    | 2   | 35 | 100 |
|   |      | . 3 | 20 |     |
|   |      | 1   |    |     |
| ( | )    | 2   |    | 100 |
|   |      | . 3 | 20 |     |

| 3 |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

|  | ` | ` | , | , |
|--|---|---|---|---|
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |
|  |   |   |   |   |

| ľ |    |    |    |     |
|---|----|----|----|-----|
|   |    |    |    |     |
|   |    |    |    |     |
|   |    |    |    |     |
|   | 25 | 5  | 0  | 30  |
| , | 20 | 10 | 10 | 40  |
|   | 15 | 15 | 0  | 30  |
|   | 60 | 30 | 10 | 100 |

| 1 | 5  | 0  | 0 | 5  |
|---|----|----|---|----|
| 2 | 10 | 10 | 5 | 25 |
| 3 | 5  | 10 | 0 | 15 |
| 4 | 5  | 5  | 0 | 10 |
| 5 | 5  | 0  | 5 | 10 |
| 6 | 5  | 5  | 0 | 10 |

| 7  | 5  | 0  | 5  | 10  |
|----|----|----|----|-----|
| 10 | 5  | 5  | 5  | 15  |
|    | 45 | 35 | 20 | 100 |

2010

 [ ]
 1990

 [ ]
 1992

 1.
 1992

 2.
 , 1993

K

3.

**《 》** 2021 2 2021 3 ( ) 🗆 ( ) 🗆  $\checkmark$  $\sqrt{\phantom{a}}$ 32 32

DC/DC、DC/AC、AC/DC

•

0 \_ \_ \_

- - ,

- --

- - DC/DC, DC/AC, AC/DC ; - -

- . T - -

,

`

•

|   | _ <del>_</del> |   |   |   |   |   |
|---|----------------|---|---|---|---|---|
|   |                |   | ` | • |   |   |
|   |                |   |   |   |   |   |
|   | 0              |   | 0 |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   | 0              |   |   |   |   |   |
|   |                |   | 0 |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   | o              |   |   |   |   |   |
|   |                |   |   |   | 0 |   |
|   |                |   |   |   |   |   |
|   | , ,            |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   | ۰              |   | 0 |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   | 0              |   |   |   |   |   |
|   |                |   |   |   | 0 |   |
|   |                |   |   |   |   |   |
| [ | 1              |   |   |   |   |   |
|   |                |   |   |   |   |   |
|   |                | 1 | 2 | 3 | 4 | 5 |

| 1   |   |   |   |   |   |
|-----|---|---|---|---|---|
|     | 1 | 2 | 3 | 4 | 5 |
| 2.3 |   |   |   |   |   |
| 2.4 |   |   |   |   |   |
| 4.1 |   |   |   |   |   |
| 4.2 |   |   |   |   |   |

| 0    |  |  |  |
|------|--|--|--|
| 12.1 |  |  |  |
|      |  |  |  |
| 0    |  |  |  |

`

1.

2.

0

3.

0

10.

ľ l

1. ( 1)

2. ( 1)

3. ( 1) 1) 4. 5. 。( 1) 1 1 DC/DC 1 1 2 DC/DC DC/DC ( 2) 1. 2. DC/DC ( 2) 3. DC/DC 2) 4. PWM

DC/DC 。( 2) 1 DC/DC (PWM) DC/DC PWM DC/DC 1 DC/DC DC/DC DC/DC (PWM) DC/DC DC/DC DC/DC DC/DC PWM

PWM UC3842 DC/AC 1 1, 2, 3 DC/AC 1 2) 1. 2. 2) 3. PWM 2 3) ( 2) 4.  ${\tt SPWM}$ 5. HFPWM 2) 6. PWM (SVPWM) 2 3) 7. **4**) ( 8. (UPS) ( 2) 9. (VVVF) 。( 2) 1 PWM

790

SPWM

PWM

HFPWM SVPWM

SVPWM 。

r 1

PWM

PWM

PWM

SPWM

SPWM SPWM

**HFPWM**PWM PWM

PWM (SVPWM)

PWM PWM

SVPWM

(UPS) .
(VVVF)

, (VVVF)

AC/DC

1 2 AC/DC

1. AC/DC

PWM PWM PWM 1 1 2 1. ( 1 2) 1 2. ( 2) 3. 2 3) 。( 1 1 PWM PWM 0

PWM

(FACTS) 1. 1 2) 2. (HVDC) ( 2) TCR 3. TSC 2) 4. ( 2) 5. ( **2**) ( 6. 2) 7. 2) ( 8. 2) ( 9. 。( **5**) 1 TCR TSC HVDC 1 (FACTS) (HVDC)

(TCR)

•

`

•

•

o

| 6  | 3<br>2 |     | ۰   | o |
|----|--------|-----|-----|---|
| 7  | 3 3    | PWM | PWM | o |
| 8  | 4      |     | 0   | 0 |
| 9  | 4<br>2 |     | o   | o |
| 10 | 4 3    |     | •   | o |
| 11 | 5<br>1 |     | •   | ۰ |
| 12 | 5<br>2 |     | 0   | o |
| 13 | 5<br>4 |     | ۰   | o |
| 14 | 5<br>5 |     | 0   | 0 |
| 15 | 5<br>6 |     | 0   |   |
| 16 | 5<br>7 |     | 0   |   |
| 17 |        |     | o   | o |

`

| 0 | 0 | 2 |  |  |  |  |  |  | 2 |
|---|---|---|--|--|--|--|--|--|---|

| 1 | 1 | DC/DC | 5  |  |  |   |   | 5  |
|---|---|-------|----|--|--|---|---|----|
| 2 | 2 | DC/AC | 8  |  |  | 1 | 2 | 11 |
| 3 | 3 | AC/DC | 5  |  |  |   |   | 5  |
| 4 | 4 |       | 2  |  |  |   |   | 2  |
| 5 | 5 |       | 6  |  |  |   |   | 6  |
| 6 |   |       | 1  |  |  |   |   | 1  |
|   |   | ı     | 29 |  |  | 1 | 2 | 32 |

**t** 1

| 30% |   | 70%。 |     |
|-----|---|------|-----|
|     |   |      |     |
|     | 1 | 40   |     |
| ( ) | 2 | 40   | 100 |
|     | 3 | 20   |     |
|     | 1 | 15   |     |
|     | 2 | 15   |     |
| ( ) | 3 | 30   | 100 |
|     | 4 | 20   |     |
|     | 5 | 20   |     |

| 1 |  |  |
|---|--|--|
|   |  |  |

|   | Г |   |   |
|---|---|---|---|
|   |   |   |   |
|   | , | ` | ` |
| , | , |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

| 40 | 40 | 20 | 0 | 0 | 100 |
|----|----|----|---|---|-----|
|    |    |    |   |   |     |

`

1. . . . . .

- 3. . 2011.
- 5. . 2000.
- 6. B W . HIGH-POWER CONVERTERS AND AC DRIVES. IEEE P : A  $\mbox{ J } \mbox{ W & \& S } \mbox{, I } \mbox{., P } \mbox{, 2006}.$

**« 》** 2020 2 2020 3 )  $\checkmark$  $\checkmark$ 56 40 16 ( )

O - ( C).

•

•

DC/DC、AC/DC、DC/AC

о

| ٥ |     |
|---|-----|
|   | ` ` |
|   | o   |
| Y |     |
|   |     |
| 0 | •   |
|   | ۰   |
|   | `   |
| ٥ | ۰   |

[ ]

|      | 1 | 2 | 3 |
|------|---|---|---|
| 2.3  |   |   |   |
| 2.4  |   |   |   |
| 4.1  |   |   |   |
| 12.1 |   |   |   |

`

1.

2.

3. 11. 1 DC/DC DC/DC ( 1. DC/DC 2. ( ) 3. DC/DC ) (

4.

803

、 PWM

(2 / / / BUCK /

( ) 1. 2. ) 3. 4. PWM ( 5. SVPWM 6. UPS 7. )。 1 PWM PWM **PWM** > SVPWM **SVPWM** SVPWM UPS 1 (1 1 ) (1 1 ( PWM )。 (1.5 1.5 ) PWM PWM 0.5 **SPWM** (0.5)SPWM , SPWM

```
PWM
              (2
                         2 )
PWM
SVPWM
             (2
                           )
                        2
SVPWM
                     SVPWM \qquad \  \, _{\circ}
                        1 )
            UPS (1
UPS
           VVVF (1
                         1 )
PWM, SVPWM
SPWM,
/
1
                                    AC/DC
1.
   APFC
                        )
2.
   PWM
                               )。
   ]
APFC PWM
1
                   (0.5
                             0.5
              APFC (1.5
                             1.5
APFC , APFC
```

```
PWM
                           (2
                                        2
                                           )
                       (
                                           )。
PWM
1
                       、 PWM
1
1
                (
                          )
1.
                          )
2.
3.
                               )。
                   (
1
1
                (1
                            1
                                )
                (1
                            1
                                )
             PWM
                         PWM
                            2
              (2
                              )
                             PWM
                                            PWM
1
```

1 **FACTS** 1. 2. HVDC ( SVC 3. ( ) 4. ASVG 5. APF ( )。 1 **FACTS** HVDC SVC > APF 1 (1 1 ) 、 FACTS (1 HVDC SVC (2 2 ASVG (2 2  $\$  ASVG APF (2 2

(4 ) 1, 2. (1) (2) (3) 

Boost DC-DC

DSP

0

0

POER ECVO

DSP ( ) 1 1, 2. PWM , / В DSP PWM A/D DSP <sub>o</sub> B PI PWM B 1.B PSIM S C S C 2. B **DSP TI F28335**  $C \hspace{1cm} \circ \hspace{1cm} TI \hspace{1cm} CCS$ 3. PWM B : 1. PI 2.PSIM S C 3. PTS-3000 、PEK-120 

812

PSIM S C

TI CCS

DSP

 $_{\circ}$   $_{\circ}$  PWM

PI 。

0

`

| 1  |     | /   |               | •     |
|----|-----|-----|---------------|-------|
| 2  |     | /   | `             | •     |
| 3  | 2-3 |     | PWM           | /PWM  |
| 4  | 5-6 | PWM | PWM<br>/SVPWM |       |
| 5  |     |     |               | o     |
| 6  |     |     | ,             |       |
| 7  |     | PWM | PWM           | , ,   |
| 8  |     |     | `             |       |
| 9  |     |     | ,             |       |
| 10 |     |     | `             | ` ` ` |

| (10%) 3 | 0 |  |
|---------|---|--|
|---------|---|--|

| [ |     | ]     |    |       |    |        |    |
|---|-----|-------|----|-------|----|--------|----|
|   | <60 | 60-75 | 7  | 75-90 |    | 90-100 | 0  |
|   | ,   | ,     |    | ,     |    | ,      |    |
|   |     |       |    |       |    |        |    |
|   |     |       |    |       |    |        |    |
|   |     |       |    |       |    |        |    |
|   |     |       |    |       |    |        |    |
|   |     |       |    |       |    |        |    |
|   |     |       |    |       |    |        | 0  |
| [ | ·   | 0     |    | O     |    |        | ٥  |
| • |     |       |    |       |    |        |    |
| + |     | 20    | 10 |       | 0  |        | 30 |
| + |     | 10    | 20 |       | 10 |        | 40 |

| 30 | 50 | 20 | 100 |
|----|----|----|-----|

| [ ] |    |    |   |     |
|-----|----|----|---|-----|
|     |    |    |   |     |
|     |    |    |   |     |
|     |    |    |   |     |
|     | 50 | 50 | 0 | 100 |
|     | 50 | 50 | 0 | 100 |

| [ ]     |    |    |   |     |
|---------|----|----|---|-----|
|         |    |    |   |     |
|         |    |    |   |     |
| 1 DC/DC | 20 | 15 | 0 | 35  |
| 2 DC/AC | 20 | 10 | 0 | 30  |
| 3 AC/DC | 5  | 0  | 0 | 5   |
| 4       | 5  | 5  | 0 | 10  |
| 5       | 15 | 5  | 0 | 20  |
|         | 65 | 35 | 0 | 100 |

1 2016。 1 1. 1999。 2. 2002。 3. 2016。 ( 5 ) 4.  $2009\,{\scriptstyle \circ}$ 

5. B K.B . 2013.

•

•

0

o

\_\_\_\_

\_\_\_\_\_

/ 2017 4 2017 5

|          | $\checkmark$ |    |       |   |
|----------|--------------|----|-------|---|
| '        | <u>·</u>     |    |       |   |
|          |              |    |       |   |
|          | ( )          |    | ( ) 🗆 |   |
|          |              |    | ( ) 🗆 |   |
| <b>4</b> |              |    | ( ) 🗆 |   |
| <b>4</b> |              |    | ( ) 🗆 |   |
|          |              |    | ( ) 🗆 |   |
| 2        |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |
|          |              | 30 |       | 4 |

[ ]

« **»** ]\_ Ē . T ] « **»** 

•

|   | , , , , |   |
|---|---------|---|
|   |         | ` |
| 1 | •       | ` |
|   |         | ` |
|   |         | • |
|   | 0       |   |
|   |         |   |
| 2 |         | ` |
|   |         |   |
|   | 0       |   |
|   |         |   |
|   |         |   |
| 3 | `       |   |
|   |         | ` |
|   |         | o |
|   | •       |   |

| [ ] |   |   |   |
|-----|---|---|---|
|     | 1 | 2 | 3 |
| 2.3 |   |   |   |
|     |   |   |   |
| 2.4 |   |   |   |
| 0   |   |   |   |
| 4.1 |   |   |   |
|     |   |   |   |
| 5.3 |   |   |   |
| 0   |   |   |   |

1.

2.

0

· ·

•

3.

0

4.

0

1

1

1. ;

2.3.

4.

1 [ 1 1, 2, 2 1 1, 2 1); ( 1. ( 2. 1 **2**) ( 3. 1 2)。 > 4. 2) 。( 1 1, 2, 3,

3 1 1 2 1); ( 1. 2. 1) 3. ( 2) 4. 2)。 ( 1 1 1, 2, 3, 1 4 1 1, 2 3 N-R PQ 1. ( 1); 2. ( 1 2) 3. P-Q

3) ( 2)。 ( 4. 1 **、**NR PQ 1, 2, 3、P-Q 4, . [ ] 5 1 2 ( 1); 1. 2. 1) ( ( 3. 2) 4. 。( **2**)

1 1 1, 2, 3, 4, [ ] 6 1 1, 2, 3 Park ( 1); 1. 2. dq0 abc Park ( **2**) 3. ( **2**)。 4. ( 3)。 1 Park 1

|   | 1,     |     |   |    |   |    |   |   |             |
|---|--------|-----|---|----|---|----|---|---|-------------|
|   | 2, abc |     |   |    |   |    |   |   |             |
|   | 3、Park | dq0 |   |    |   |    |   |   |             |
|   | 4,     |     |   |    | 0 |    |   |   |             |
|   |        |     |   |    |   |    |   |   |             |
|   |        |     |   |    |   |    |   |   |             |
|   |        |     | 7 |    |   |    |   |   |             |
| • |        |     | 1 |    |   |    |   |   |             |
|   |        |     |   | 1、 |   | 2、 |   | 3 |             |
|   |        |     |   |    |   |    |   |   |             |
|   |        |     |   |    |   |    |   |   |             |
|   |        |     |   |    |   |    |   |   |             |
|   | 1.     |     |   |    |   |    |   | ( | 1);         |
|   | 2.     |     |   |    |   |    |   | ( | 2)          |
|   | 3.     |     |   |    |   |    | ( |   | <b>3</b> )。 |
| • | 1      |     |   |    |   |    |   |   |             |
|   | -      |     |   |    |   |    |   |   |             |
|   |        |     |   |    |   |    |   |   | O           |
|   |        |     |   | O  |   |    |   |   |             |
|   | 1      |     |   |    |   |    |   |   |             |
|   | 1,     |     |   |    |   |    |   |   |             |
|   | 2,     |     |   |    |   |    |   |   |             |
|   | 3,     |     |   | 0  |   |    |   |   |             |
|   |        |     |   |    |   |    |   |   |             |
|   |        |     | 8 |    |   |    |   |   |             |
| - |        |     |   |    |   |    |   |   |             |
|   |        |     | 1 |    |   |    |   |   |             |
|   |        |     |   | 1, |   | 2, |   | 3 |             |
|   |        |     |   |    |   |    |   |   |             |

1. ( 1);

2. ( 2)

3. ( p

4. ( 3).

[ ]

1,
2,
3,
4,
4,
.

>

| 1 | 1 |  |   |   |   |   |
|---|---|--|---|---|---|---|
| 2 | 2 |  |   | ` | 0 |   |
| 3 | 3 |  | ` |   | o |   |
| 4 | 4 |  |   |   |   | o |
| 5 | 5 |  |   |   | ` |   |

|   |   |  | o      |
|---|---|--|--------|
| 6 | 6 |  | ۰      |
| 7 | 7 |  | "<br>" |
| 8 | 8 |  | 0      |
| 9 | 9 |  | 0      |

| 1 | 1 | 2 |   |  |  |  | 2 |
|---|---|---|---|--|--|--|---|
| 2 | 2 | 2 |   |  |  |  | 2 |
| 3 | 3 | 2 |   |  |  |  | 2 |
| 4 | 4 | 4 | 2 |  |  |  | 6 |
| 5 | 5 | 4 |   |  |  |  | 4 |
| 6 | 6 | 4 |   |  |  |  | 4 |
| 7 | 7 | 4 |   |  |  |  | 4 |
| 8 | 8 | 4 | 2 |  |  |  | 6 |
|   |   |   | 2 |  |  |  |   |
| 9 | 9 | 4 |   |  |  |  | 4 |

| 30 | 4 |  |  |  | 34 |
|----|---|--|--|--|----|

[ ]

•

80%。

| 1 | 60 |     |
|---|----|-----|
| 2 | 20 | 100 |
| 3 | 20 |     |
| 1 | 50 |     |
| 2 | 25 | 100 |
| 3 | 25 |     |

| ľ |    |    |    |     |
|---|----|----|----|-----|
|   |    |    |    |     |
| 1 | 5  | 0  | 0  | 5   |
| 2 | 10 | 0  | 0  | 10  |
| 3 | 5  | 0  | 0  | 5   |
| 4 | 10 | 5  | 5  | 20  |
| 5 | 5  | 5  | 0  | 10  |
| 6 | 5  | 0  | 5  | 10  |
| 7 | 5  | 5  | 0  | 10  |
| 8 | 5  | 5  | 5  | 15  |
| 9 | 10 | 0  | 5  | 15  |
|   | 60 | 20 | 20 | 100 |

**[ ]**( ) 2004 9

-

, DC/DC , DC/AC , AC/DC PWM .).

0

|               | 0 |
|---------------|---|
|               | 0 |
|               |   |
|               |   |
| 0             |   |
| (             |   |
| 、DC/DC 、DC/AG |   |
| AC/DC PWM     |   |
|               |   |
|               | 0 |
| ٥             | ` |
|               | 0 |
|               |   |
|               |   |
|               | 0 |

[ ]

|     | 1 | 2 | 3 |
|-----|---|---|---|
| 2.3 |   |   |   |

| 2.4 | 0        |  |  |
|-----|----------|--|--|
| 3.1 | `        |  |  |
|     | 0        |  |  |
| 3.2 | ( ), ( ) |  |  |
| 4.1 |          |  |  |
|     | 0        |  |  |

| <b>»</b> |
|----------|
|          |
|          |
|          |
|          |
| OC       |
|          |
|          |

[ ] 1

°

0

0

PI

II II

1 I II **T** 3 I II I II 1 DC/DC ( ), DC/AC 2 3 、AC/DC PWM [ 1

o

(PFC)

| • |  |  |
|---|--|--|

| 11 |       | PWM<br>°   | • |
|----|-------|------------|---|
| 22 |       | 0          | o |
| 33 |       |            | o |
| 44 |       | o          | 0 |
| 55 |       | I II       | 0 |
| 66 |       | PI         | 0 |
| 77 | DC/DC | DC-DC<br>° | ۰ |

| 88 |              | DC/AC               | o |
|----|--------------|---------------------|---|
| 99 | AC/DC<br>PWM | AC/DC PWM  STATCOM. | 0 |
| 10 |              | 0                   | , |
| 11 |              | 0                   | 0 |

| 1 |  | 10 |  |  |  |  |  |  |  | 10 |
|---|--|----|--|--|--|--|--|--|--|----|
| 2 |  | 10 |  |  |  |  |  |  |  | 10 |
| 3 |  | 12 |  |  |  |  |  |  |  | 12 |
|   |  | 32 |  |  |  |  |  |  |  | 32 |

[ ]

1 60 100

| ( | ) | 2 | 40 |     |
|---|---|---|----|-----|
|   |   | 3 | 0  |     |
|   |   | 1 | 50 |     |
| ( | ) | 2 | 20 | 100 |
|   |   | 3 | 30 |     |

|  | 1 |   |     |     |
|--|---|---|-----|-----|
|  |   |   |     |     |
|  |   |   |     |     |
|  |   |   |     |     |
|  |   | ` | , , | , , |
|  |   |   |     |     |
|  |   |   |     |     |
|  |   |   |     |     |
|  |   |   |     |     |

| 20 | 20 | 20 | 50  |
|----|----|----|-----|
| 30 | 10 | 10 | 50  |
| 50 | 20 | 30 | 100 |

30 0 0 30 25 15 0 40

| 5  | 25 | 0 | 30  |
|----|----|---|-----|
| 60 | 40 | 0 | 100 |

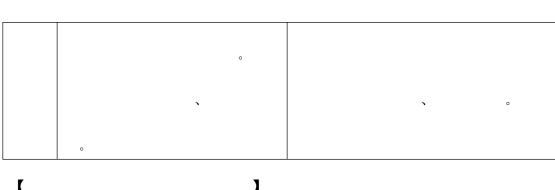
 $\langle\!\langle$  $\rangle\!\!\rangle$ 2020 2020 6 5 ) 🗆  $\checkmark$  $\checkmark$ 34 30 4 1 **»** 

° – – –

. O E - E B ,

E P F A , ., - - -

- . I , , ,


- , - - ,

,

0

|   | • |
|---|---|
| 0 |   |
|   |   |
|   | o |
|   |   |
| , |   |
|   | ` |
| 0 | ` |
|   |   |
| 0 | 0 |





。 3frE±•@

1,

0

•

[ q ] ] 1, 2.

± ěѲ@ñ0 S6C QÄ€`/Ð,€

1. /

2.

3. ´b[ ,@ñ0 Y yl+bF%±\$ P ...#yl!,F%¿5.

r j

2,

1. Yd11 0 2. 90 3. 4. 1 90 [ 1 1 2, 1, 4, Yd11 3, 2 1, 2, 3、 3 1, 2,

4、

846

3、

4 1, 2, 4, °

I
1
1. 6
3

3

2.

3.

4. °

5. °

[ ] 6 .

1, 2, 3, ·

1, 2, 3, 4, °

1, 2, 3, 4,

1, 2, 3, 4,

o

1, 2,

3、 4、

ľ

1, 2 1. ( 1, 2) 2. 1) ( 3. ( 1, 2). 1 1 1, 2, 3、 1, 2, 3, 1, 2, 3、

1, 2

1. ( 1) 2. 1, 2). 1 1 2, 1, 3、 1, 2、 3、 1, 2 1. ( 1) 2. ( 1, 2) 3.

( 1)。 1 Y/ -11 1 1, 2, 1, 2, 3、 1, 2, 3, 4、 0 0 1 1 1. 2. 1

, TA

0

1,

1, 2,

1, 2,

3,

0

1.

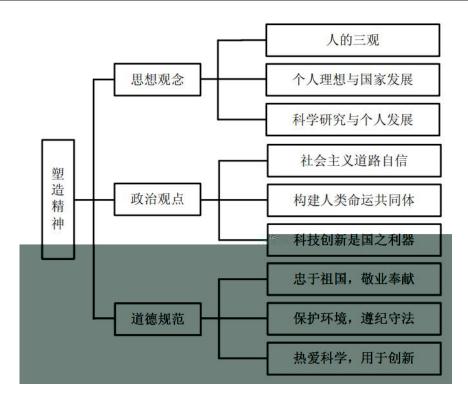
2.

•

[ ]

1, 2, .

## (PCS-931)


## ONLLY-F08AE

o

•

| 1 | 1 1 |      |      | 0    |
|---|-----|------|------|------|
| 2 | 1 1 |      |      | 0    |
| 3 | 1 4 |      | `    | o    |
| 4 | 2   | Y 11 | Y 11 | 0    |
| 5 | 3   |      |      | o    |
| 6 | 3 5 |      |      | o    |
| 7 | 4   |      |      | GPS/ |
| 8 | 4   |      |      | o    |

|    | 6 |   |   |
|----|---|---|---|
|    |   |   | 0 |
|    | 3 |   |   |
|    | 3 |   | ` |
|    |   |   | o |
|    |   |   |   |
|    |   |   |   |
| 9  |   |   |   |
|    |   |   | ` |
|    |   |   | o |
|    |   | ` |   |
| 10 |   |   |   |
|    |   |   | 0 |
|    |   |   |   |



| 6 | 6 | 6  |   |  |  |   | 6  |
|---|---|----|---|--|--|---|----|
| 7 | 8 | 2  |   |  |  | 1 | 3  |
| 8 |   |    | 4 |  |  |   | 4  |
|   |   | 29 | 4 |  |  | 1 | 34 |

**t** 1

° °

>

0 0

40% 60%。。

0

|   |   | 1 | 100 | 100 |
|---|---|---|-----|-----|
| ( | ) | 2 | 0   | 100 |
|   |   | 1 | 80  | 100 |
| ( | ) | 2 | 20  | 100 |

1

m" J !" ]

|          |   |    |   |    | ` |
|----------|---|----|---|----|---|
|          |   |    |   |    |   |
|          |   |    |   |    |   |
| <b>T</b> | 1 |    |   |    |   |
|          |   |    |   |    |   |
|          |   | 80 | 0 | 80 |   |

20

20

20

100

[ ]

| 1 | 8   | 0 | 8   |
|---|-----|---|-----|
| 2 | 25  | 0 | 25  |
| 3 | 22  | 0 | 22  |
| 4 | 15  | 0 | 15  |
| 5 | 8   | 0 | 8   |
| 6 | 15  | 0 | 15  |
| 7 | 7   | 0 | 7   |
|   | 100 | 0 | 100 |

( 2 ) 2010

3 , ""

[1] , , , . . . (4)

2010 .

[2] . 2007 .

http://202.206.208.43/jpkcwj/jdbh/jdbh/index.htm.

**« 》** 2020 2020 5 4 sd01930460 ( ) 🗆 ( )  $\checkmark$ 2 1 « **»** 

2.2
4.1
12.1

1.

2.

(D) .

3.

12.

•

`

, ) 2, 3, 4, o ( , ) , 

2, 3, ( ) 1, 2 3 ( ) 0 1 (1) (2) (3) 0 1 1, 2, 3, 4, 5, 6, 2 3 1 1

| 1,       |   |     |   |    |  |
|----------|---|-----|---|----|--|
| 2,       |   |     |   |    |  |
| 3,       |   | 0   |   |    |  |
|          |   |     |   |    |  |
|          |   | 1   | O | n  |  |
|          |   | 1   | 2 | 3  |  |
|          |   |     |   |    |  |
|          |   | `   |   |    |  |
|          | 0 |     |   |    |  |
| [        | 1 |     |   |    |  |
|          |   |     |   |    |  |
|          |   |     | o |    |  |
| [        | 1 |     |   |    |  |
| 1.       | • |     |   |    |  |
| 2,       |   |     |   |    |  |
| 3,       |   |     |   |    |  |
| 4,       |   |     |   |    |  |
| 4、<br>5、 |   | (LU |   | )。 |  |

| 1 |  | o |
|---|--|---|
| 2 |  | 0 |
| 3 |  | o |
| 4 |  | · |
| 5 |  | 0 |
| 6 |  | • |

| 7 |  |   |   | 0 |
|---|--|---|---|---|
| 8 |  | , | 0 |   |

`

| 1 |  | 1  |  |   |  |   |  |    |
|---|--|----|--|---|--|---|--|----|
| 2 |  | 3  |  |   |  |   |  |    |
| 3 |  | 3  |  |   |  |   |  |    |
| 4 |  | 8  |  |   |  | 2 |  |    |
| 5 |  | 5  |  |   |  |   |  |    |
| 6 |  | 8  |  | 4 |  |   |  |    |
|   |  | 28 |  | 4 |  | 2 |  | 34 |

[ ]

•

。 。 20%

80%。

|   |   | 1   | 50 |     |
|---|---|-----|----|-----|
| ( | ) | 2   | 40 | 100 |
|   |   | . 3 | 10 |     |
| ( | ) | 1   | 48 | 100 |

| 2   | 40 |
|-----|----|
| . 3 | 12 |

p

|   | 50 | 40 | 10 | 100 |
|---|----|----|----|-----|
|   |    |    |    |     |
| • |    |    |    |     |

[ ] ( ) ( ) 2010 " " 。

1 PAUL M. ANDERSON, "FAULTED POWER SYSTEM", IEEE PRESS POWER SYSTEMS ENGINEERING SERIES.

 $\langle\!\langle$  $\rangle\!\!\rangle$ 2017 4 2017 5  $\checkmark$  $\checkmark$ 34 30 1 « **»** 

0

•

, . T

`

0

EMS

|  | 0 |
|--|---|
|  |   |

[ ]

|      |     | 1 | 2 | 3 |
|------|-----|---|---|---|
| 2.3  | >   |   |   |   |
|      | o   |   |   |   |
| 2.4  | 0   |   |   |   |
| 4.1  |     |   |   |   |
| 0    |     |   |   |   |
| 11.2 | ( ) |   |   |   |
|      | o   |   |   |   |

« », « », « », «

•

•

; 2. 1 [ ] 1, 2, 3、 4、 1 ( 1. ) ( 2. ) 3. )。 1

1.

[ ] 1, 2, 3、 4、 5、 1 **(** ) 1 1. ) 2. )。 ( 1 1

1, 2、 3, 4、 [ ] 1 ); 1. RTU ( ( 2. ) 3. )。 ( 1 1, RTU 2, 3、 4、

1 1 ); 1. 2. ( ) 3. )。 ( 1 [ ] (DMS) 1, 2, (FA) (DSM) 3、 4、 5、

6,

1 1. ); 2. ( 3. ( ) 4. ( )。 1 [ ] 1, 2, 3、 4、

| 3 | 2 |   |   |   |
|---|---|---|---|---|
|   |   | ` | 0 | 0 |
| 4 |   |   |   | , |
|   | 3 |   | 0 | • |
|   |   |   |   |   |
| 5 | 4 |   | , | o |
|   |   |   | 0 |   |
| 6 | 5 |   |   |   |
|   |   |   |   | • |
| 7 |   |   |   | , |
|   | 6 |   |   | 0 |
|   |   |   |   |   |
| 8 | 7 |   |   |   |
|   |   |   | 0 | 0 |
| 9 |   |   |   | , |
| 9 |   | ` | , | ۰ |

`

| 4 | 4 |          | 4 |  |  |   |   | 4  |
|---|---|----------|---|--|--|---|---|----|
| 5 | 5 |          | 3 |  |  |   | 1 | 4  |
| 6 | 6 |          | 4 |  |  |   |   | 4  |
| 7 | 7 |          | 3 |  |  | 1 |   | 4  |
|   |   | <u> </u> |   |  |  |   |   | 34 |

r 1

0

•

30% 70%。

| 1 | 60 |     |
|---|----|-----|
| 2 | 20 | 100 |
| 3 | 20 |     |
| 1 | 60 |     |
| 2 | 20 | 100 |
| 3 | 20 |     |

S

|  | , |   |  |
|--|---|---|--|
|  |   | ` |  |
|  |   |   |  |

| 6 |    |    |    |     |
|---|----|----|----|-----|
| 7 | 15 | 0  | 5  | 20  |
|   | 60 | 20 | 20 | 100 |

`

2. ( ) 2012

**I** 1

3. 《 》 2013 。

4. GB38755-2019 《 》 2019-12-31.

5. GB/T 40091-2021 《

» 2021-4-30.

:// . . . / / D ? =C1A814733AAF7A48E05397BE0A0A1C8D

|   | <b>《</b> 》                            |      |   |
|---|---------------------------------------|------|---|
|   | <b>&gt;</b> , , ,                     | `    |   |
| : | 2014 1                                | 2014 | 3 |
| ` |                                       |      |   |
|   |                                       |      |   |
|   | Micro-computer based relay protection |      |   |
|   | sd01931030                            |      |   |

 $\checkmark$  $\sqrt{}$ 2 34 ( 30+ 4) », « >> 《 >, « », « », « ≫、

、 、 、 CPU 、 Z

`

(3)

(4)

(5)

|      |   | 1 | 2  | 3   |
|------|---|---|----|-----|
| 2. 1 |   | * | ** | *   |
|      | ` |   |    |     |
| 6. 2 | • | * | *  | *** |
|      | 0 |   |    |     |

1 (2 2 ) [ ]

0

0

[ ] 1, 2,

3, 4,

1 ] 1 (2 【 2 ) ] 0 [ 1 2, 1, 3, 1 **(** / 1 2 (2 2 ) [ ] ALF MUX

A D

]

1, 2, MUX 3, A D 1 ALF MUX MUX D A D A D A D A [ / ] ALF MUX D A A D 2 3 (2 ) 1 VFC A D 1、VFC A D 2, 3, ] VFC A D VFC A D [ / ] VFC A D

1.5 0.5 ) 1 (2 [ ] **T** 1 1, 2, 3, ] ] 0.5 2 (2 1.5 ) ] [ Z Z Z [ 1 1, 2, Z 3, Z 1 Z Z Z Z Z

[ / ] Z Z 3 (2 2 ) [ ] [ ] 2, 1, 3, 4, 1 Z Z Z **(** / ] 4 (4 2 2 ) ] 0 1 1, 2, 3,

[ ]

>

0 0

1, 2,

3, -

1,

[ / ] 2 (2 2 ) [ ] ľ 1 1, 2, 90 3、 ] 180 90 1 90 2 (2 2 ) ] 0 • 1 1, 2,

> ] 1 (2 【 ) 2 1 0 ] 1, 2, 3, 4, 1 1 2 (2 2 ) 1 1 0 1

[ / ]

| _    |   |   |   |   |   |
|------|---|---|---|---|---|
|      | 1 | 2 | 3 | 4 | 5 |
| 1.1  | √ |   |   |   |   |
| 2. 1 |   | √ |   |   |   |
| 2. 2 |   | √ | √ |   |   |
| 2. 3 |   | √ |   |   |   |
| 3. 1 |   |   | √ |   |   |
| 3. 2 |   | √ | √ |   |   |
| 3. 3 |   |   |   | √ |   |
| 3. 4 | √ |   | √ |   |   |
| 4.1  |   |   |   |   | √ |
| 4. 2 |   | √ |   |   | √ |
| 5. 1 |   |   |   |   |   |
| 6. 1 |   | √ |   |   | √ |
| 6. 2 |   |   |   | √ |   |
| 6. 3 |   |   |   |   | √ |
| 8. 1 |   |   |   |   | √ |
| 8. 2 |   |   |   |   |   |

[ ] ( , ) [ ] 100%。 [ ] 60%+ 30%+ 10%

| 5  |    |   | 5  |
|----|----|---|----|
| 15 | 5  |   | 20 |
| 10 | 5  |   | 15 |
| 10 | 10 | 5 | 25 |
| 10 | 10 | 5 | 25 |
| 10 |    |   | 10 |

`

0

( )

( )

1,

2,

°

•

•

` ( )

( )( )

1、 2、

3、 4、MUX

5, A D ( VFC )

6,

•

A D 。

0

**`**( )

( )( )

( ) Z

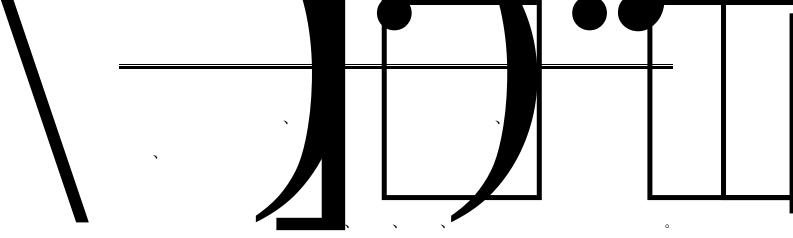
( ) Z 1, 2, 3, 4, Z • ( ) ( ) ( ) ( ) ( ) ( ) 1, 2, 3,

0

1、 2、

3、 4、

•


) ( ) 1, 2, 3, 4, 5, 1 ( 4 ) 2013 1 [7] 4 ) 2010 [8] 2007 . [9] 2013 [10] 2007 [11] 2008 . 1991 . [12] [13]  $\rangle$ http://jc.cepp.com.cn/kejianinfoAction.do?id=63.

896

http://202.206.208.43/jpkcwj/jdbh/jdbh/index.htm.

[14]

**« 》** 2020 2020 3 3 SD0193269E ) 🗆  $\checkmark$ ) 🗆  $\checkmark$ 48 48 1 «  $\rangle$ (



- -

- T "

|   | `   |
|---|-----|
| ` | `   |
|   | `   |
|   |     |
|   | o   |
|   |     |
|   | `   |
|   | •   |
| ` | `   |
|   | `   |
| 0 | 0   |
|   |     |
|   | , , |
|   |     |
| ` |     |
|   | О   |
| 0 | ۰   |
| • | •   |
| o |     |
|   |     |
|   | `   |
|   |     |
| 0 | 0   |
| ` | ۰   |
|   |     |
| 0 |     |

| ľ | 1 |   |   |   |   |   |
|---|---|---|---|---|---|---|
|   |   | 1 | 2 | 3 | 4 | 5 |
| ` |   |   |   |   |   |   |
|   |   |   |   |   |   |   |

•

•

0

1. ;

2.

•

r 1

`

1. ; 2. 3. 1 1 1 1. 2. 3. 1

[ ]

1 ( 1. ) 2. ( ) 3. GIS ( ) 1 1

1. ( **、**); 2. ( )。 1 1 1 ( ); 1.

)

2.

(

r z

`

1. ( );

T 1

1.

)。 [ 1 ( ) 1 1 1. ( ) 2. ( 3. ( , )。 1 1 ( )

•

| 1 |   | ° | 0             |
|---|---|---|---------------|
| 2 |   | o | 0             |
| 3 | , |   | 0             |
| 4 |   |   | 0             |
| 5 |   | o | •             |
| 6 |   | o | (<br>)<br>( ) |
| 7 |   |   |               |

9 ...

10 ( m"

| 1  | 8  |    | 2 | 10  |
|----|----|----|---|-----|
| 2  | 10 |    |   | 10  |
| 3  | 5  | 5  |   | 10  |
| 4  | 5  | 5  |   | 10  |
| 5  | 5  | 5  |   | 10  |
| 6  | 5  | 5  |   | 10  |
| 7  |    | 10 |   | 10  |
| 8  |    | 10 |   | 10  |
| 9  |    | 10 |   | 10  |
| 10 |    | 8  | 2 | 10  |
|    | 40 | 60 |   | 100 |

[ ]
( 3 )
( 2015
( 2 )
( 2 )
( 2 )
( 2 )
( 2 )
( 2 )
( 2 )

2020 4 2020 5

|          | ( ) | (  | ) |   |
|----------|-----|----|---|---|
| <b>V</b> |     |    |   |   |
|          |     |    |   |   |
|          | 40  | 40 |   |   |
|          |     |    | 1 | , |
|          |     | ,  | ` |   |
|          |     |    |   |   |

, [ ]

**«** 

**»** 

.

|   | , |
|---|---|
|   | • |
|   |   |
| 0 |   |
|   |   |
|   |   |
|   | Ō |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   |   |
|   | · |
|   |   |
| o | ` |
|   |   |
|   | 3 |
|   |   |
|   |   |
| o | 0 |

1 1 2 3 2.3 2.4 0 4.1 7.1 1. 2. « )

3.

°
4.

o

•

° 1

( ) [ ]

`

**(** )

° ( )
[ ]

`

0

**(** )

ľ 1

0

( ) [ ]

o

**(** )

[ ]

0

( ) [ ]

.

0

( ) [ ]

•

o

( ) [ ]

•

1 ( ) 1 1 1 [ ( ) ( ) 1 ( ) 1 ] ( **(** ) ( ) 1

**EMTP** 

0

[ ]

EMTP

0

[ ]

EMTP

•

`

| • |   |  |           |   |        |   |
|---|---|--|-----------|---|--------|---|
|   |   |  |           |   |        |   |
| 1 |   |  |           |   | 0      |   |
| 2 | 2 |  |           | - | "<br>" | - |
| 3 | 3 |  |           |   |        | 0 |
| 4 | 4 |  |           |   | 0      |   |
| 5 | 5 |  | "<br>2008 | 0 | ,      |   |
| 6 | 6 |  |           |   | 0      |   |
| 7 | 7 |  |           |   |        | o |
| 8 | 8 |  |           |   |        | o |

| 9 | 9 |   |  |   |
|---|---|---|--|---|
|   |   | 0 |  | 0 |

`

| 1  | 2  |  |  |   |   | 2  |
|----|----|--|--|---|---|----|
| 2  | 1  |  |  | 1 |   | 2  |
| 3  | 3  |  |  | 1 |   | 4  |
| 4  | 3  |  |  |   | 1 | 4  |
| 5  | 4  |  |  |   |   | 4  |
| 6  | 3  |  |  | 1 |   | 4  |
| 7  | 4  |  |  |   |   | 4  |
| 8  | 4  |  |  | 1 | 1 | 6  |
| 9  | 4  |  |  | 1 | 1 | 6  |
| 10 | 4  |  |  |   |   | 4  |
|    | 32 |  |  | 5 | 3 | 40 |

•

[ ]

•

•

•

•

0

0

o

•

。 /

2) . . . .

4:2.

4)

30% 70%。

|     | 1 | 60 | 100 |
|-----|---|----|-----|
| ( ) | 2 | 40 | 100 |

| 3 | 0  |     |
|---|----|-----|
| 1 | 50 | 100 |
| 2 | 30 | 100 |
| 3 | 20 |     |

| <u> </u> | 1 |   |   |   |
|----------|---|---|---|---|
|          |   |   |   |   |
|          | ` | ` | , | ` |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |
|          |   |   |   |   |

| [ ] |    |    |    |    |
|-----|----|----|----|----|
|     |    |    |    |    |
|     |    |    |    |    |
|     |    |    |    |    |
|     | 15 | 10 | 0  | 50 |
|     | 10 | 10 | 10 | 20 |
|     | 15 | 10 | 0  | 25 |

| 10 | 0  | 10 | 5   |
|----|----|----|-----|
| 50 | 30 | 20 | 100 |

[ ]

| 1  |    |    |   |     |
|----|----|----|---|-----|
| 2  | 20 | 0  | 0 | 20  |
| 3  |    |    |   |     |
| 4  | 10 | 5  | 0 | 15  |
| 5  | 10 | 5  | 0 | 15  |
| 6  | 5  | 5  | 0 | 10  |
| 7  | 5  | 5  | 0 | 10  |
| 8  | 5  | 10 | 0 | 15  |
| 9  | 5  | 5  | 0 | 10  |
| 10 | 0  | 5  | 0 | 5   |
|    | 60 | 40 | 0 | 100 |

1. 《 ( )》 。 2018。

2006。

\_\_\_\_

**》** 

/ 2020 4 2020 5

**«** 

| $\overline{\mathbf{V}}$ | (  | ) 🗆      |    | ( | ) 🗆 |  |  |
|-------------------------|----|----------|----|---|-----|--|--|
|                         |    | <b>V</b> |    |   |     |  |  |
|                         |    |          |    |   |     |  |  |
|                         | 40 |          | 40 |   |     |  |  |
|                         |    |          |    |   |     |  |  |
|                         |    |          | `  |   | `   |  |  |
|                         |    |          |    |   |     |  |  |

。 8

。 10

IEC \_【 \_ ] Н - T Т . Н . T 8 AC , DC . C . C 10 - . O IEC.

|   | ` |
|---|---|
|   | ` |
|   |   |
| , |   |
|   | ` |
| 0 | 0 |

[ ]

|     | 1 | 2 | 3 |
|-----|---|---|---|
| 2.1 |   |   |   |
| 3.1 |   |   |   |
| 3.2 |   |   |   |
| 3.3 |   | Н |   |
| 4.1 |   |   |   |
| 6.2 |   |   |   |

•

1 1. 2. 3.

0

0

4.

1

1 1. 2. 3. 1 1. 2. 3. 1 1

`

[ ] ,

2.

3.

•

`

>

r z

•

1. 2.

3.

r 1

•

,

r J

R , ( ), ( ),

`

`

r 1

`

2.

3.

•

3.

2.

[ ]

0

•

2.

3.

**r** 1

•

[ ]

\$ 50%

ľ

`

1. 2. 3. 1 1 LR RC 1 1. 2. 3. 1

1.
2.
[ ]

| 3  | 1 | • | K   |
|----|---|---|-----|
| 4  | 2 |   | o   |
| 5  | 3 |   |     |
| 6  | 4 |   | 0   |
| 7  | 5 |   | o   |
| 8  | 6 |   | o   |
| 9  | 7 |   | o   |
| 10 | 8 | K |     |
| 11 | 9 |   | " " |

| 3  | 2  | 3  |  |  | 1 |  | 4  |
|----|----|----|--|--|---|--|----|
| 4  | 3  | 3  |  |  |   |  | 3  |
| 5  | 4  | 3  |  |  | 1 |  | 4  |
| 6  | 5  | 5  |  |  |   |  | 5  |
| 7  | 6  | 4  |  |  | 1 |  | 5  |
| 8  | 7  | 3  |  |  |   |  | 3  |
| 9  | 8  | 2  |  |  | 1 |  | 3  |
| 10 | 9  | 2  |  |  |   |  | 2  |
| 11 | 10 | 2  |  |  | 1 |  | 3  |
|    |    | 35 |  |  | 5 |  | 40 |

•

[ ]

。 。 30%

70%。

|     | 1 | 55 |     |
|-----|---|----|-----|
| ( ) | 2 | 45 | 100 |
|     | 3 | 0  |     |
|     | 1 | 45 |     |
|     | 2 | 35 | 100 |
|     | 3 | 20 |     |

| ` | ` |  |
|---|---|--|
|   |   |  |

| • | ■ |  |  |
|---|---|--|--|

| 25 | 5  | 0  | 30  |
|----|----|----|-----|
| 0  | 20 | 20 | 30  |
| 20 | 10 | 0  | 30  |
| 45 | 35 | 20 | 100 |

**[** ]

| 2  | 4  | 1  | 4   |
|----|----|----|-----|
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 3  | 10  |
| 3  | 4  | 0  | 10  |
| 3  | 3  | 0  | 6   |
| 32 | 43 | 25 | 100 |

[ ]

01931150

- T - . T - . T - ,

. E

. T [ 1 ] (1) (2) (3)

(4)

|      |   |   | 1  | 2  | 3   | 4   |
|------|---|---|----|----|-----|-----|
| 5. 1 | ۰ | 1 | ** | ** | *** | *   |
| 5. 2 | ٥ | ` | *  | *  | **  | *** |

\* \*\* \*\*

(12 12 0 0 0 ) 1 1 1) 2) 3) 4) 5) 6) 7) 8) 10) 9) 11) 12) ] 3D 1 (6 6 0 0 0 ) ] ] 1) 2) 4) 3) 5) 6) 7) 8) 9) 10) 11) 1 ]

(6 0 6 0 0 ) 1 1 1) 2) PN 4) 3) 5) 6) 7) 8) ] > 1 / (8 0 0 6 0 ) 1 ] 1) 2) 3) 4) 5) 6) 1 ]

`

|      | 1 | 2 | 3 | 4 |  |
|------|---|---|---|---|--|
| 1.1  | X |   |   |   |  |
| 1.2  |   |   | X |   |  |
| 1.3  |   |   | X |   |  |
| 1.4  |   |   | X |   |  |
| 1.5  |   |   | X |   |  |
| 1.6  |   | X |   |   |  |
| 1.7  |   |   | X |   |  |
| 1.8  |   |   |   | X |  |
| 1.9  |   |   |   | X |  |
| 1.10 |   |   | X |   |  |
| 1.11 |   |   | X |   |  |
| 1.12 | X |   |   |   |  |
| 2.1  |   | X |   |   |  |
| 2.2  |   | X |   |   |  |
| 2.3  |   |   | X |   |  |
| 2.4  |   |   |   | X |  |
| 2.5  |   |   | X |   |  |
| 2.6  |   | X |   |   |  |
| 2.7  | X |   |   |   |  |
| 2.8  |   |   |   | X |  |
| 2.9  |   |   |   | X |  |
| 2.10 | X |   |   |   |  |

|      | T | T |   | 1 | T |
|------|---|---|---|---|---|
| 2.11 | X |   |   |   |   |
| 2.12 | X |   |   |   |   |
| 3.1  | X |   |   |   |   |
| 3.2  |   |   | X |   |   |
| 3.3  |   |   | X |   |   |
| 3.4  |   |   | X |   |   |
| 3.5  |   |   | X |   |   |
| 3.6  |   |   | X |   |   |
| 3.7  |   |   |   | X |   |
| 3.8  | X |   |   |   |   |
| 3.9  | X |   |   |   |   |
| 4.1  |   |   | X |   |   |
| 4.2  |   |   |   | X |   |
| 4.3  |   |   | X |   |   |
| 4.4  |   |   |   | X |   |
| 4.5  |   |   | X |   |   |
| 4.6  | X |   |   |   |   |
|      |   |   | · |   |   |

**[** ] 80% 20% .

[ ]

1, 50%+ 40%+

10%

2, 3、 (1) (2) (3) (4) (5) (6) (7) (8) 1 G M. M . P . R J W &S , I ..., H , N J1 1. , 2009 2. 2003 3. 2012

**«** 

2014 1 2014 3

| I        | I |      | E | P | G | S |
|----------|---|------|---|---|---|---|
| 01930660 |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   | 201′ | 7 |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
| `        | ` |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |
|          |   |      |   |   |   |   |

0 0

- ,

T . I . T

. T

]

1  ${\tt MATLAB}$ MATLAB/Simulink

|   | [          |      |            | 1        |   |     |     |
|---|------------|------|------------|----------|---|-----|-----|
|   |            |      |            |          | 1 | 2-5 | 6-8 |
|   |            | 5. 1 | 1          |          |   |     |     |
|   | 5. 1       | ``   |            | •        | * | *** | *** |
|   |            | 5. 2 |            |          |   |     |     |
|   | 5. 2       |      |            | ٥        | * | *** | *** |
| _ |            | *    | **         | ***      |   |     |     |
|   | `          | (2   | MATLAB/S   | Simulink |   |     |     |
|   | <b>T</b>   | 1    |            |          |   |     |     |
|   | ľ          | 1    |            |          |   |     |     |
|   | ľ          | 1    |            |          |   |     |     |
|   | <b>(</b> / | 1    |            |          | 0 |     |     |
|   | _          |      | 3/Simulink | (2       | 2 | )   |     |
|   |            | ]    |            |          |   |     |     |

## MATL MATLE MATURE Simuling

o

(2 2 ) [ ]

r 1

0

•

(2 2 ) [ ]

o

.

[ / ]

(2 2 )

ľ 1

r j

o

] 1 (2 2 ) 1 1 V/f1 Simulink ] (2 2 ) ] 1 1 1 (2 2 ) ]

1 1 1 (2 2 ) 1 1 ] ] (4 ) 4 1 1 AGC 1 1 AGC

(2 2 ) ] 1 ] ] (4 4 ) 1 1 ] 1

|      | 1        | 2        | 3 |
|------|----------|----------|---|
| 1.1  | √        |          |   |
| 1.2  |          | √        |   |
| 2    | <b>√</b> | <b>√</b> |   |
| 3. 1 |          | √        |   |

| 3. 2 |   | <b>√</b>     | √ |
|------|---|--------------|---|
| 4    |   | $\checkmark$ |   |
| 5. 1 | √ |              |   |
| 5. 2 |   | √            | √ |
| 6. 1 |   | √            | √ |
| 6. 2 | √ | √            |   |
| 6. 3 |   | √            |   |
| 7. 1 |   | √            |   |
| 7. 2 | √ | √            |   |
| 8    | √ | $\checkmark$ |   |

`

( , ) + 70%-

30%-

[ ]

1.

2.

3.

4.

5.

6.

7. .

( )

| (  | (   | ( |
|----|-----|---|
| )  | )   | ) |
| 5% |     |   |
| 5% | 10% |   |
|    | 10% |   |

|    | 10% | 5% |
|----|-----|----|
|    | 10% | 5% |
|    | 10% | 5% |
| 5% | 10% |    |
| 5% |     | 5% |

[ ] ( , , )

Felix A. Farret, M. Godoy Simos.Integration of Alternative Energy Sources of Energy.New Jersey: Wiley-IEEE Press, 2006

1.
2010
2.
3.
2015

**« 》** 2017 1 2017 1 2022 4  $\sqrt{\phantom{a}}$  $(\hspace{.5cm})\,\square$  $(\quad \ )\,\Box$  $\checkmark$ 32 0 0 32 **«** » « 》《 》《 **》** 1

•

DC

0

0

7-ÃAî

| 0 |          |
|---|----------|
|   |          |
|   |          |
| o |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
| ` | <b>`</b> |
|   |          |
| 0 |          |
|   | o        |
|   |          |
|   |          |
|   |          |
|   |          |
|   | `        |
| 0 |          |
|   |          |
|   | `        |
|   |          |
|   |          |
|   | 0        |
| 0 |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   | 0        |
|   |          |
|   |          |
| 0 |          |
|   |          |
|   | 0        |

[ ]

|     | 1 | 2 | 3 | 4 | 5 |
|-----|---|---|---|---|---|
| 2.3 |   |   |   |   |   |
| 0   |   |   |   |   |   |
| 2.4 |   |   |   |   |   |
| 4.1 |   |   |   |   |   |
| 0   |   |   |   |   |   |
| 6.2 |   |   |   |   |   |
|     |   |   |   |   |   |
| 7.1 |   |   |   |   |   |
| o   |   |   |   |   |   |

1. ;

o

•

1.

2.3.

r J

1. ;

2. ;

3.

C )

•

•

r j

1. ( );

o

r 1

- 2-3 - 3 - 3-4,6 °

4-5 2-3 3-4 6 12 12 12 1 1. ( ); 2. ) 3. )。 1 1

•

o

, / °

0

1.

); 2. HVDC (

0 0

0

0

( ) ( ) ); 1. ( 2. 3. ( )。 1 1 VSC-HVDC

969

1

1. ( ); 2. ( ). 3. ( ).

o

r j

0

•

o o

r 1

1. ( )

2. ( ).

**(** )

o

| 1 | 1      | u y | 0 |
|---|--------|-----|---|
| 2 | 1      |     |   |
| 3 | 2 1    | o   | 0 |
| 4 | 2 4    | o   | 0 |
| 5 | 2 5    | `   | 0 |
| 6 | 2 6    |     | o |
| 7 | 2<br>7 |     | 0 |
| 8 | 3 3    |     |   |

|    |        |   |   | 0 |
|----|--------|---|---|---|
| 9  | 4      |   |   | o |
| 10 | 4<br>4 | / | , | o |
| 11 | 5 2    |   |   | 0 |
| 12 | 6      |   | , | 0 |
| 13 | 7      |   |   | 0 |
| 14 | 7      |   | , | o |
| 15 | 8      |   |   | 0 |
| 16 | 8<br>2 |   |   | o |
| 17 |        |   | ` | 0 |

`

| 1 | 1 | 4 |  |  |  |  |  | 4 |
|---|---|---|--|--|--|--|--|---|
| 2 | 2 | 4 |  |  |  |  |  | 4 |
|   |   |   |  |  |  |  |  |   |
| 3 | 3 | 6 |  |  |  |  |  | 6 |
| 4 | 4 | 4 |  |  |  |  |  | 4 |
|   |   |   |  |  |  |  |  |   |

| 5 | 5 |     | 4  |  |  |  | 4  |
|---|---|-----|----|--|--|--|----|
| 6 | 6 | ( ) | 4  |  |  |  | 4  |
| 7 | 7 |     | 4  |  |  |  | 4  |
| 8 | 8 |     | 2  |  |  |  | 2  |
|   |   |     | 32 |  |  |  | 32 |

•

[ ]

•

。 。 30%

70%。

| 1   | 40 |     |
|-----|----|-----|
| 2   | 20 |     |
| . 3 | 20 | 100 |
| 4   | 10 |     |
| 5   | 10 |     |
| 1   | 30 |     |
| 2   | 20 |     |
| . 3 | 20 | 100 |
| 4   | 15 |     |
| 5   | 15 |     |

[ ]

| ` | , |  |
|---|---|--|
|   | 0 |  |

[ ]

| 15 | 10 | 10 | 5  | 5  | 45  |
|----|----|----|----|----|-----|
| 10 | 5  | 5  | 5  | 5  | 30  |
| 5  | 5  | 5  | 5  | 5  | 25  |
| 30 | 20 | 20 | 15 | 15 | 100 |

[ ]

| 1   | 10 | 0 | 0 | 0 | 0 | 10 |
|-----|----|---|---|---|---|----|
| 2   | 10 | 5 | 0 | 0 | 0 | 15 |
| 3   | 10 | 5 | 0 | 0 | 0 | 15 |
| 4   | 5  | 5 | 5 | 0 | 0 | 15 |
| 5   | 5  | 5 | 5 | 0 | 0 | 15 |
| 6 ( | 0  | 0 | 5 | 0 | 0 | 5  |

0 0 5

\_\_\_\_\_

**«** 

2020 3 2020 3

| 32 ( 32 |
|---------|
|         |
| , ,     |
|         |

•

This course is a professional basic course. The study of this course, will help students master the basic concepts of economics, the basic theory, basic knowledge and basic analysis methods, and enable students to master the general principle and other aspects of the operation mechanism of the market economy and use some basic economic analysis methods and tools to do some an empirical analysis of relevant theories and models . The course will lay a foundation of economic theory and management practice for the students to further study in the future.

•

|   | `            | `        |
|---|--------------|----------|
|   |              | `        |
| 1 | `            |          |
|   |              | • 0      |
|   | 0            |          |
|   |              |          |
|   |              |          |
|   |              |          |
| 2 |              |          |
|   |              | , ,      |
|   | 0            |          |
|   | <del>-</del> | <u> </u> |

I I

|          | 1 | 2 | 3 |
|----------|---|---|---|
| 2.4      |   |   |   |
| <u> </u> |   |   |   |
| 0        |   |   |   |
| 4.1      |   |   |   |
|          |   |   |   |
|          |   |   |   |
| 11.1     | 0 |   |   |
|          |   |   |   |
| `        |   |   |   |
|          |   |   |   |
|          |   | 1 | 1 |

•

1.

2.

o

3.

,

**]** 1); ( 1, 2, ( 1); 3, ( 1)。 ľ 1 1 1 2 1, ( 1 2) 2, ( 1 2) 3, 1 ( 2)。 1

r 1

(1) (2)



**»** +(

2, ( 1 2). [ ]

2)。

[ ] 1 2 1, (

1 2)<sub>°</sub>

[ 1 2).

o

0

**(** )

1, ( 1); > 1, ( 1);



|    |        | 0     | 0 |
|----|--------|-------|---|
| 3  | 2 2    | <br>0 | 0 |
| 4  | 2 3    | <br>o | o |
| 5  | 3 1    | 0     | 0 |
| 6  | 3 2    |       |   |
| 7  | 4      | <br>o |   |
| 8  | 5      | <br>  | o |
| 9  | 6      |       | 0 |
| 10 | 7<br>1 |       | 0 |
| 11 |        | <br>` | • |

| 7 | 7 | 2  |  |  |   |  | 2  |
|---|---|----|--|--|---|--|----|
|   |   | 27 |  |  | 5 |  | 32 |

[ ]

0 0

。 20%

| 8 | 0%。 |   |   | 0  |     |
|---|-----|---|---|----|-----|
|   |     |   |   |    |     |
|   |     |   |   |    |     |
|   |     |   |   |    |     |
|   |     |   | 1 | 70 | 100 |
|   | (   | ) | 2 | 30 | 100 |
|   |     |   | 1 | 6  |     |
|   | (   | ) | 2 | 4  | 20  |
|   |     |   | 3 | 10 |     |



[ ]

|          | «         |          | - | <b>»</b> |   | _   |      |   |   |
|----------|-----------|----------|---|----------|---|-----|------|---|---|
| /        | 201       | 7 4      |   |          |   |     | 2017 | 5 |   |
| `        |           |          |   |          |   |     |      |   |   |
|          |           |          |   |          |   |     |      |   |   |
|          |           |          |   |          |   |     |      |   |   |
|          |           |          |   |          |   |     |      |   |   |
|          | $\square$ | (        | ) |          | ( | ) 🗆 |      |   |   |
|          |           | 32       |   | 32       |   |     |      |   |   |
|          |           |          |   | 32       |   | `   |      |   |   |
|          |           |          | ` |          |   |     |      |   |   |
| ľ        | 1         |          |   |          |   |     |      |   |   |
| <u> </u> | -         | <b>»</b> |   |          |   |     |      |   | 0 |
|          | `         |          |   |          |   | `   |      |   |   |

•

-

- - , - - -

, D - - . T

,

•

|   | , , |
|---|-----|
|   | `   |
|   | ,   |
|   | , , |
| 0 |     |
|   | o   |
| , |     |
|   |     |
| 0 |     |
|   |     |
|   |     |
|   | ,   |
|   |     |
| 0 |     |
| 0 | 0   |
|   |     |

|      | 1 | 2 | 3 |
|------|---|---|---|
| 2.4  |   |   |   |
| 4.1  |   |   |   |
| 11.1 |   |   |   |
|      |   |   |   |

•

» « » « »

( , , )

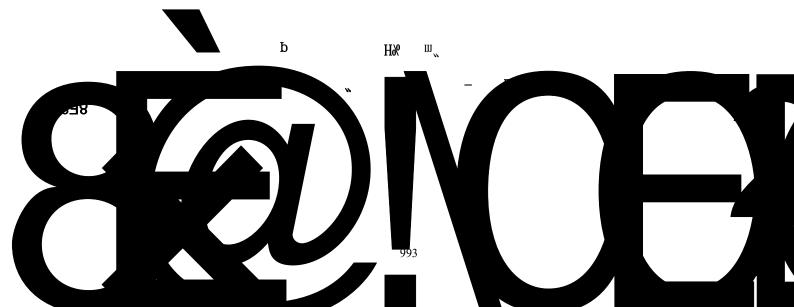
•

o

r i

1. ;

2.


3.

4. .

r 1

0

1. 2. 3. 4. ( ) 1 1. 2. 3. 1 > 1 



o

•

 $\rightarrow$  (  $\rightarrow$  , ) /

E

1.

。( );

2.

0

•

1 1 , 3 5 。 1 1. 。( ) 2. 。( ) 3. ) 。( 1

995

[

•

0

>

1. ( ) .

2.

)。

3. ( )<sub>°</sub>

[ ]

`

\_\_\_\_

1. ( ) 2. ( ); 3. ( 4. )。 ( 1 ( ) 1 ( )

o

0

0

0

o

,

1

2 3 2

4 3 6

5 4 1 ...

| -   |     |  |   | 0 |  |
|-----|-----|--|---|---|--|
|     |     |  |   |   |  |
|     | 17  |  | ` |   |  |
|     | 1 / |  |   | 0 |  |
| - 1 |     |  |   |   |  |

`

| 1 | 1 | 1  |  |  |   | 1 |   | 2  |
|---|---|----|--|--|---|---|---|----|
| 2 | 3 | 6  |  |  |   |   |   | 6  |
| 3 | 4 | 6  |  |  |   |   |   | 6  |
| 4 | 5 | 1  |  |  | 1 |   |   | 2  |
| 5 | 6 | 4  |  |  |   |   |   | 4  |
| 6 | 7 | 4  |  |  |   |   |   | 4  |
| 7 | 8 | 5  |  |  |   | 1 | 2 | 8  |
|   |   | 27 |  |  | 1 | 2 | 2 | 32 |

r 1

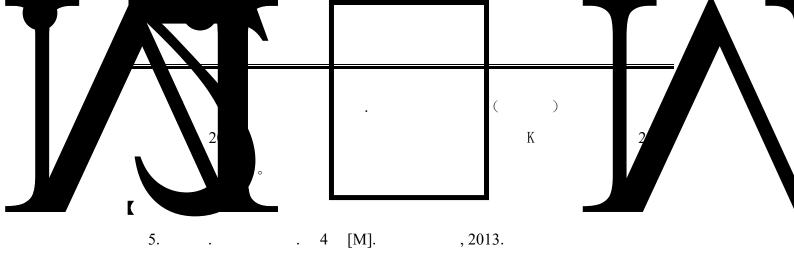
• • •

。 。 30%

70%.

|   |   | 1 | 40 |     |
|---|---|---|----|-----|
| ( | ) | 2 | 60 | 100 |
|   | , | 3 | 0  |     |
|   |   | 1 | 20 |     |
|   | ) | 2 | 60 | 100 |
|   | , | 3 | 20 |     |

| ` | , | , | , |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |


[ ]

| 5  | 25 | 10 | 50  |
|----|----|----|-----|
| 0  | 10 | 10 | 20  |
| 15 | 25 | 0  | 30  |
| 20 | 60 | 20 | 100 |

**t** 3

| 1 | 5  |    | 0 | 5   |
|---|----|----|---|-----|
| 3 |    | 15 |   | 15  |
| 4 | 10 | 15 |   | 25  |
| 5 | 5  | 0  |   | 5   |
| 6 | 5  | 10 |   | 15  |
| 7 | 5  | 10 |   | 15  |
| 8 | 5  | 15 | 0 | 20  |
|   | 40 | 60 | 0 | 100 |

[ ]



( ) » 2020 5 2020 5

| (Bilingual) |    |     |       |   |  |  |
|-------------|----|-----|-------|---|--|--|
|             |    |     |       |   |  |  |
|             |    |     |       |   |  |  |
|             |    |     |       |   |  |  |
|             |    |     |       |   |  |  |
| $\square$   | (  | ) 🗆 | ( ) 🗆 |   |  |  |
| $\square$   |    |     |       |   |  |  |
|             |    |     |       |   |  |  |
|             | 56 | 40  | 8     | 8 |  |  |
|             |    |     |       |   |  |  |
|             |    |     |       |   |  |  |
|             |    |     |       |   |  |  |

•

° - - -

T "E M P (B )"

\_ .B F E \_

 $E_{-}$  (1) C R ,

- - - ·

- - - - -

\_ \_ , \_ \_ \_

- , - -

- -

\_ . T

. T

·

[ ]

,

0

| <br>0 |   |
|-------|---|
|       |   |
|       | ` |
|       |   |
| `     |   |
| , ,   | • |
| 0     |   |
|       |   |
|       | > |
|       |   |
|       | , |
| ,     |   |
|       | 0 |
|       |   |
|       |   |
|       |   |
| 0     | 0 |
|       |   |
|       |   |
|       | ` |
|       |   |

ľ

|     | 1 | 2 | 3 | 4 |
|-----|---|---|---|---|
| 2.4 | Н |   |   |   |
| 4.1 | М |   |   |   |
| 6.1 |   | M |   |   |
| 9.3 |   |   |   | М |

| 10.1   | M |   |  |
|--------|---|---|--|
| 10.2 K | Н |   |  |
| 10.3   | Н |   |  |
| 11.1   |   | Н |  |

•

`

> 4 > (4 I 4 **1** 1. U 2. U . ( ) . <u>3</u>. M ) . ; A \_ \_ **]**\_ B

; M ; D

]

**]**。 U 

(6 В 6

**1**.U ); 2. **\_** U ); 3.M ( );4.M (

)。 **1** M ; E ; T ; T ; G ] ∥am -] E -; R (12 M 6 2 ) 4 **T**\_ **]** 1. U ); 2. ( ; ( );3. M M )。 ‰ **, ]** T ; A ; R u m" S ) [ ( M 4 3 G

```
1
] C
                                      (8
       P
                                                    6
   2 )
                 1 1. U
                  ( _
                                )_; 2.
Ĺ
            ] R
                           ; G
           ; C
                                          ; C
1
               ] G
):N
    (2
                                 (6
       S
            S
    )
2
1.U
                                     ); 3 U
2.U
                                         (
      ) .
             I EMS
L
                                            E
```

<del>- -</del>

] / ) : C (2 (12 T 6 4 2 **1**.U ) 2.U ( ( ); 3 M \_)。 ( [\_ **]** P 3-1 / **]** N ):V (2 (4 T **]** E [ P ); )。 **]** E P ;

- -

] 1 I (4 **1**.U [ \_ ( ) \_ 2.U\_ )。 **]** G 1 ] I (4 4 [ \_ **]** U ) ; U )。 ] ] 1 Н 1 1 C K

|    |                                                  |          |     |   | 0      |
|----|--------------------------------------------------|----------|-----|---|--------|
|    |                                                  |          | D   |   |        |
| 2  | С                                                | 1        |     |   | u      |
|    |                                                  |          |     |   | "<br>。 |
|    |                                                  |          |     |   |        |
| 3  | C                                                | 2        | G   |   |        |
|    |                                                  |          |     | 0 | 0      |
| 4  | С                                                | 2        | Т   |   |        |
| 4  |                                                  | 2        | 1   |   | 0      |
|    |                                                  |          |     |   |        |
| 5  | С                                                | 2        | C   |   |        |
| )  |                                                  | 3        | S   |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          | E   |   |        |
| 6  | С                                                | 3        | E   |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          |     |   |        |
| _  |                                                  |          | C   |   |        |
| 7  | С                                                | 4        |     |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          | Н   |   |        |
| 8  | C                                                | 4        | P   |   |        |
|    |                                                  |          |     |   | _      |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          | T   |   |        |
| 9  | С                                                | 5        | 1   |   |        |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          | C - |   |        |
| 10 | С                                                | 5        | C - |   |        |
| 10 |                                                  | 3        |     |   |        |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          | C   |   |        |
| 11 | C                                                | 6        |     |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          | M   |   | 0      |
| 12 |                                                  |          | M   |   |        |
| 12 | C                                                | 6        |     |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          | D   |   |        |
| 13 | С                                                | 7        | В   |   |        |
|    |                                                  |          |     |   | 0      |
|    |                                                  |          | -   |   |        |
|    |                                                  |          | T   |   |        |
|    |                                                  |          | N   |   |        |
| 14 | С                                                | 8        | 1,  |   |        |
|    |                                                  |          |     |   |        |
|    |                                                  |          |     |   | _      |
|    | <del>                                     </del> |          |     |   | 0      |
|    | Е                                                |          | В   |   |        |
| 15 | ~                                                | 1        |     |   |        |
|    |                                                  | 1        |     |   | o      |
|    |                                                  |          | T   |   |        |
|    | Е                                                |          |     |   |        |
| 16 | ~                                                | 2        |     |   |        |
|    |                                                  | <u>~</u> |     |   | •      |
|    |                                                  |          |     |   |        |
| 17 |                                                  |          |     |   | 0      |
|    | L_                                               |          |     |   |        |
|    |                                                  |          |     |   |        |

|   |   |   | ,   |    |   |  |   |    |
|---|---|---|-----|----|---|--|---|----|
|   |   |   |     |    |   |  |   |    |
|   |   |   |     |    |   |  |   |    |
|   |   |   |     |    |   |  |   |    |
|   |   |   |     |    |   |  |   |    |
|   |   |   |     |    |   |  |   |    |
| 1 | С | 1 | I   | 4  |   |  |   | 4  |
| 2 | С | 2 | В   | 6  |   |  |   | 6  |
| 3 | С | 3 | M   | 6  | 4 |  | 2 | 12 |
| 4 | С | 4 | P   | 6  |   |  | 2 | 8  |
| 5 | С | 5 | S S | 4  |   |  | 2 | 6  |
| 6 | С | 6 | Т   | 6  | 4 |  | 2 | 12 |
| 7 | С | 7 | Ι   | 4  |   |  |   | 4  |
| 8 | С | 8 | I   | 4  |   |  |   | 4  |
|   |   |   |     | 40 | 8 |  | 8 | 52 |

## [ ]

70%

|   | 10%。 |     | 0  |     |
|---|------|-----|----|-----|
|   |      |     |    |     |
|   |      | 1   | 50 |     |
| ( | )    | 2   | 30 | 100 |
|   |      | . 3 | 20 |     |
|   |      | 1   | 35 |     |
|   |      | 2   | 30 | 100 |
| ( | )    | . 3 | 30 | 100 |
|   |      | . 4 | 5  |     |

[ ]

| 8 | 5≤ <8 | 1< ≤4 | 1 |
|---|-------|-------|---|
|   | 70%   | 90%   |   |
|   |       |       |   |
|   |       |       |   |
|   |       |       |   |
|   |       |       |   |

| [ ] |    |    |    |   |     |
|-----|----|----|----|---|-----|
|     |    |    |    |   |     |
|     |    |    |    |   |     |
|     |    |    |    |   |     |
|     | 0  | 5  | 5  |   | 10  |
|     | 20 | 10 | 5  |   | 35  |
|     | 10 | 10 | 10 |   | 30  |
|     | 5  | 5  | 10 | 5 | 25  |
|     | 35 | 30 | 30 | 5 | 100 |

[ ]

C 1I 5 5 10 C 2B 5 5 10

**《** 

2017 3 2017 3

`

| Power En  | iterpris | e Mana | gement |   |   |  |   |
|-----------|----------|--------|--------|---|---|--|---|
| sd019303  | 370      |        |        |   |   |  |   |
|           |          |        |        |   |   |  |   |
|           |          |        |        |   |   |  |   |
|           |          |        |        |   |   |  |   |
| $\square$ | (        | ) 🗆    |        | ( | ) |  |   |
| $\square$ |          |        |        |   |   |  |   |
|           |          |        |        |   |   |  |   |
| 3         | 52       |        | 44     |   |   |  | 8 |
|           |          |        |        |   |   |  |   |
|           |          |        |        |   | ` |  |   |
|           |          |        |        |   |   |  |   |

**(** ) » .

.

0

\_ - • - -

, 1) \_\_\_\_\_\_, 2) \_\_\_\_\_\_, 3) \_\_\_\_\_\_, 4)

(5) (5) (7)

. A \_ \_ \_ , , , , ,

,

| ` |          |
|---|----------|
| 0 | ,        |
|   |          |
| ` | `        |
|   |          |
| • | ·        |
| 0 |          |
|   |          |
|   |          |
| 0 | 0        |
|   |          |
| 0 |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   | <u> </u> |
|   |          |
|   |          |
|   | <u> </u> |
|   |          |
|   |          |
|   |          |
|   |          |
| o |          |
|   |          |
|   |          |
|   |          |
|   |          |
|   | [        |
|   |          |
|   |          |
|   |          |
|   |          |
|   | <u> </u> |
|   |          |
|   |          |

| 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| , and the second |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |

`

1. 2. 3. 3. 1 1 1. ; ( 1) 1) 2. ; ( 3. ( 1)

4. . ( 1)

r j

0

o

ľ J

1 2

1.

。( 1 3);

2. ( 1

2) [ ]

o

•

[ ]

PPT .

1 2 3

1. ( 1);

2.

( 1)

3. ( **2**)

4. ( 3).

1, 2 3 1. ( 1); 2. 1) ( ( 3. 1) 4. 1) ( 5. ( 2 ( 3)。 1 1

K

o

1 2

1. ( 1);

2. ( 2) ( 1)

•

0

1 2

1.

1); 2. ( **2**)

1 1 SWOT 1 2 1. 1); 2. 1) ( 3. ( 2) 1 1 > > 1 2

1); 1. ( ( 2. 1) > 3. 2) ( 1 > ] (NPV) (IRR)。 > 1 1 2 2

1025

PPT

|    |   |                                       | 0          |
|----|---|---------------------------------------|------------|
| 3  | 3 | `                                     | o          |
| 4  | 4 | 0                                     | o          |
| 9  | 5 | PPT (RO -R )                          | « "        |
| 10 | 6 | PPT 1 2                               | o          |
| 11 | 7 | " " " " " " " " " " " " " " " " " " " | <i>"</i> " |
| 12 | 8 | "<br>"                                | 0          |
| 13 |   | `                                     | o          |

| i | 1 | I |    | 1 |   |   |  |    |
|---|---|---|----|---|---|---|--|----|
|   |   |   |    |   |   |   |  |    |
|   |   |   |    |   |   |   |  |    |
|   |   |   |    |   |   |   |  |    |
|   |   |   |    |   |   |   |  |    |
| 1 | 1 |   | 3  |   |   |   |  | 3  |
| 2 | 2 |   | 10 |   | 2 | 1 |  | 13 |
| 3 | 3 |   | 4  |   |   |   |  | 4  |
| 4 | 4 |   | 4  |   | 2 |   |  | 6  |
| 5 | 5 |   | 4  |   | 2 |   |  | 6  |
| 6 | 6 |   | 4  |   | 2 |   |  | 6  |
| 7 | 7 |   | 6  |   |   |   |  | 6  |
| 8 | 8 |   | 8  |   |   |   |  | 8  |
|   |   |   | 44 |   | 8 |   |  | 52 |

`

0

40% 60%.

|   |   | 1   | 50 |     |
|---|---|-----|----|-----|
| ( | ) | 2   | 40 | 100 |
|   |   | 3   | 10 |     |
|   |   | 1   | 48 |     |
| ( | ) | 2   | 40 | 100 |
|   |   | . 3 | 12 |     |

| ľ | 1 |    |    |    |     |
|---|---|----|----|----|-----|
|   |   |    |    |    |     |
|   | ` |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
|   |   |    |    |    |     |
| [ | 3 |    |    |    |     |
|   |   |    |    |    |     |
|   |   | 10 | 10 | 0  | 20  |
|   |   | 10 | 10 | 10 | 30  |
|   |   | 5  | 5  | 0  | 10  |
|   |   | 0  | 0  | 40 | 40  |
|   |   | 50 | 40 | 10 | 100 |
| ľ | 1 |    |    |    |     |
|   |   |    |    |    |     |

 10
 0
 0
 10

 5
 5
 5
 10

 5
 5
 5
 15

\_\_\_\_

**«** 

>

2020 3 2020 5

|  | <b>√</b> |  |  |
|--|----------|--|--|
|  | <b>V</b> |  |  |
|  | <b>4</b> |  |  |
|  | ✓        |  |  |
|  | ✓        |  |  |
|  | ✓        |  |  |

c

0

•

[ ]

|      | 1 | 2 | 3 |
|------|---|---|---|
| 1.2  |   |   |   |
| 2.3  |   |   |   |
| 10.1 |   |   |   |
|      |   |   |   |

·

1.

2.

3.

0

15.

o

(3 2 1 ) 1 1 ] 1 (3 2 1 ) 1

1

(3 2 1 ) ·

1 1 (3 2 1 ) 1 ] 1 ] (3 2 1 ) 1 ] ] ] (3 1 ) 2 1 1

(3 1 ) 2 1 1 1 1 (3 2 1 ) ] 1 1 ] (3 2 1 ) 1 ] 1 ] (3 2 1 ) 1 

1 1 ] (3 2 1 ) 1 ] ] ] (3 2 1 ) 1 1 1 1 (3 2 1 ) 1 ]

1036

| _ | _ |   |
|---|---|---|
|   |   | ō |
| _ | - |   |

`

| 1 |  |  |  |  |  |  |  |  |  |
|---|--|--|--|--|--|--|--|--|--|
| 2 |  |  |  |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |  |
|   |  |  |  |  |  |  |  |  |  |

· 1

• •

20% 80% .

•

| [ |   | 1 |  |  |  |
|---|---|---|--|--|--|
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
|   |   |   |  |  |  |
| [ | 1 |   |  |  |  |
|   |   |   |  |  |  |

| 25 | 5  | 0  | 30  |
|----|----|----|-----|
| 0  | 10 | 5  | 35  |
| 5  | 5  | 0  | 30  |
| 0  | 0  | 5  | 5   |
| 50 | 40 | 10 | 100 |

| C J |    |    |    |     |
|-----|----|----|----|-----|
|     |    |    |    |     |
|     |    |    |    |     |
| 1   | 10 | 10 | 10 | 30  |
| 2   | 10 | 10 | 10 | 30  |
| 3   | 15 | 10 | 15 | 40  |
|     | 35 | 30 | 35 | 100 |

| • | 1 |  |      | ( | `       |
|---|---|--|------|---|---------|
|   | ) |  |      |   |         |
|   | , |  | [M]. |   | , 2009. |

**[** ] 3-5

Nagrath I J, Kothari D P, Desai R C. Modern Power System Analysis[M].
McGraw-Hill Publishing C, 1980.

. [M]. , 2003. . [M]. , 2014.